참고문헌
- Carrer, J.A.M. and Mansur, W.J. (1996), ' Time-domain BEM analysis for the 2D scalar wave equation: Initial conditions contributions to space and time derivatives', Int. J. Numer. Meth. Eng., 39, 2167-2188
- Carrer, J.A.M. and Mansur, W.J. (2002), ' Time-dependent fundamental solution generated by a not impulsive source in the boundary element method analysis of the 2D scalar wave equation ', Commun. Numer. Meth.Eng., 18, 277-285 https://doi.org/10.1002/cnm.487
- Carrer, J.A.M. and Telles, J.C.F. (1992), ' A boundary element formulation to solve transient dynamic elastoplastic problems ', Comput. Struct., 45, 707-713 https://doi.org/10.1016/0045-7949(92)90489-M
- Demirel, V. and Wang, S. (1987),' Efficient boundary element method for two-dimensional transient wave propagation problems ', Appl. Mathematical Modelling, 11, 411-416 https://doi.org/10.1016/0307-904X(87)90165-X
- Dominguez, J. (1993), Boundary Elements in Dynamics, Computational Mechanics Publications, Southampton, Boston
- Gaul, L. and Schanz, M. (1999), ' A comparative study of three boundary element approaches to calculate the transient response of viscoelastic solids with unbounded domains ', Comput. Method Appl. Mech. Eng., 179,111-123 https://doi.org/10.1016/S0045-7825(99)00032-8
- Hadamard, J. (1952), Lectures on Cauchy's Problem in Linear Partial Differential Equations, Dover Publications, New York
- Hatzigeorgiou, G.D. and Beskos, D.E. (2001), ' Transient dynamic response of 3-D elastoplastic structures by the DIBEM ', Proc. of the XXIII International Conf.on the Boundary Element Method, (eds. D.E. Beskos, C.A Brebbia, J.T. Katsikadelis, G.D. Manolis), Lemnos, Greece
- Kontoni, D.P.N. and Beskos, D.E. (1993), ' Transient dynamic elastoplastic analysis by the dual reciprocity BEM ', Engineering Analysis with Boundary Elements, 12, 1-16 https://doi.org/10.1016/0955-7997(93)90063-Q
- de Lacerda, L.A, Wrobel, L.C. and Mansur, W.J. (1996), ' A boundary integral formulation for two-dimensional acoustic radiation in a subsonic uniform flow ', J. of the Acoustical Society of America, 100, 98-107 https://doi.org/10.1121/1.415871
- Manolis, G.D. (1983), ' A comparative study on three boundary element method approaches to problems in elastodynamics ', Int. J. Numer. Meth. Eng., 19, 73-91 https://doi.org/10.1002/nme.1620190109
- Mansur, W.J. (1983),' A time-stepping technique to solve wave propagation problems using the boundary element method ', Ph.D. Thesis, University of Southampton, England
- Mansur, J.W. and Carrer, J.A.M. (1993),' Two-dimensional transient BEM analysis for the scalar wave equation: Kernels ', Engineering Analysis with Boundary Elements, 12, 283-288 https://doi.org/10.1016/0955-7997(93)90055-P
- Mansur, W.J., Carrer, J.A.M. and Siqueira, E.F.N. (1998), ' Time discontinuous linear traction approximation in time domain BEM scalar wave propagation analysis ', Int. J. Numer. Meth. Eng., 42, 667-683 https://doi.org/10.1002/(SICI)1097-0207(19980630)42:4<667::AID-NME380>3.0.CO;2-8
- Mansur, W.J. and de Lima-Silva, W. (1992), ' Efficient time truncation in two-dimensional BEM analysis of transient wave propagation problems ', Earthq. Eng. Struct. Dyn., 21, 51-63 https://doi.org/10.1002/eqe.4290210104
- Morse, P.M. and Ingard, K.V. (1968), Theoretical Acoustics, McGraw-Hill, London
- Partridge, P.W., Brebbia, C.A. and Wrobel, L.C. (1992), The Dual Reciprocity Boundary Element Method, Computational Mechanics Publications, Southampton, Boston
- Schanz, M. (2001), Wave Propagation in Viscoelastic and Poroelastic Continua, Lectures Notes in Applied Mechanics, Vol. 2, Springer-Verlag, Berlin, Heidelberg
- Soares Jr., D. and Mansur, W.J. (2004),' Compression of time generated matrices in two-dimensional timedomain elastodynamic BEM analysis ', Int. J. Numer. Meth. Eng., 61, 1209-1218 https://doi.org/10.1002/nme.1111
- Yu, G, Mansur,W.J., Carrer, J.A.M. and Gong, L. (1998),' A linear e method applied to 2D time-domain BEM ', Commun. Numer. Meth. Eng., 14, 1171-1179 https://doi.org/10.1002/(SICI)1099-0887(199812)14:12<1171::AID-CNM217>3.0.CO;2-G
피인용 문헌
- An efficient time-truncated boundary element formulation applied to the solution of the two-dimensional scalar wave equation vol.33, pp.1, 2009, https://doi.org/10.1016/j.enganabound.2008.04.002
- A step-by-step approach in the time-domain BEM formulation for the scalar wave equation vol.27, pp.6, 2007, https://doi.org/10.12989/sem.2007.27.6.683
- Two-dimensional elastodynamics by the time-domain boundary element method: Lagrange interpolation strategy in time integration vol.36, pp.7, 2012, https://doi.org/10.1016/j.enganabound.2012.01.004
- Numerical modelling of acoustic–elastodynamic coupled problems by stabilized boundary element techniques vol.42, pp.6, 2008, https://doi.org/10.1007/s00466-008-0282-2
- Prediction of crop productivity and evapotranspiration with two photosynthetic parameter regionalization methods vol.152, pp.01, 2014, https://doi.org/10.1017/S0021859612000901
- The application of BEM in the Membrane structures interaction with simplified wind vol.31, pp.3, 2009, https://doi.org/10.12989/sem.2009.31.3.349
- Scalar wave equation by the boundary element method: A D-BEM approach with constant time-weighting functions 2009, https://doi.org/10.1002/nme.2732
- Scalar wave equation by the boundary element method: a D-BEM approach with non-homogeneous initial conditions vol.44, pp.1, 2009, https://doi.org/10.1007/s00466-008-0353-4
- A two dimensional mixed boundary-value problem in a viscoelastic medium vol.32, pp.3, 2009, https://doi.org/10.12989/sem.2009.32.3.407
- One-dimensional scalar wave propagation in multi-region domains by the boundary element method vol.42, pp.3, 2020, https://doi.org/10.1007/s40430-020-2226-5
- Survey of cubic B-spline implicit time integration method in computational wave propagation vol.79, pp.4, 2006, https://doi.org/10.12989/sem.2021.79.4.473