DOI QR코드

DOI QR Code

Transient response of a piezoelectric layer with a penny-shaped crack under electromechanical impacts

  • Feng, Wenjie (Department of Mechanics and Engineering Science, Shijiazhuang Railway Institute) ;
  • Li, Yansong (Department of Mechanics and Engineering Science, Shijiazhuang Railway Institute) ;
  • Ren, DeLiang (Department of Mechanics and Engineering Science, Shijiazhuang Railway Institute)
  • Received : 2005.06.27
  • Accepted : 2006.02.03
  • Published : 2006.05.30

Abstract

In this paper, the dynamic response of a piezoelectric layer with a penny-shaped crack is investigated. The piezoelectric layer is subjected to an axisymmetrical action of both mechanical and electrical impacts. Two kinds of crack surface conditions, i.e., electrically impermeable and electrically permeable, are adopted. Based upon integral transform technique, the crack boundary value problem is reduced to a system of Fredholm integral equations in the Laplace transform domain. By making use of numerical Laplace inversion the time-dependent dynamic stress and electric displacement intensity factors are obtained, and the dynamic energy release rate is further derived. Numerical results are plotted to show the effects of both the piezoelectric layer thickness and the electrical impact loadings on the dynamic fracture behaviors of the crack tips.

Keywords

References

  1. Chen, J., Liu, Z.X. and Zou, Z.Z. (2003), ' Electromechanical impact of a crack in a functionally graded piezoelectric medium ', Theor. Appl. Fract. Mech., 39, 47-60 https://doi.org/10.1016/S0167-8442(02)00137-4
  2. Chen, W.Q. and Shioya, T. (1999),' Fundamental solution for a penny-shaped crack in a piezoelectric medium ', J. Mech. Phys. Solids, 47, 1459-1475 https://doi.org/10.1016/S0022-5096(98)00114-8
  3. Chen, W.Q. and Shioya, T. (2000), ' Complete and exact solutions of a penny-shaped crack in a piezoelectric solid: Antisymmetric shear loadings ', Int. J .Solids Struct., 37, 2603-2619 https://doi.org/10.1016/S0020-7683(99)00113-4
  4. Chen, W.Q., Shioya, T. and Ding, H.J. (2000), ' Penny-shaped crack in piezoelectrics: Resolved ', Int. J. Fract., 105,49-56 https://doi.org/10.1023/A:1007656411540
  5. Chen, Z.T. and Karihaloo, B.H. (1999), ' Dynamic response of a cracked piezoelectric ceramic under arbitrary electro-mechanical impact ', Int. J. Solids Struct., 36, 5125-5133 https://doi.org/10.1016/S0020-7683(98)00243-1
  6. Chen, Z.T. and Yu, S.W. (1999), ' Transient response of a piezoelectric ceramic with two coplanar cracks under electromechanical impact ', Acta Mech. Sinica, 15, 325-333 https://doi.org/10.1007/BF02487930
  7. Dascalu, C. and Maugin, G. (1995), ' On the dynamic fracture of piezoelectric materials ', Q. J. Mech. Appl.Math., 48, 237-255 https://doi.org/10.1093/qjmam/48.2.237
  8. Deeg, W.F. (1980), ' The analysis of dislocation, crack, and inclusion problems in piezoelectric solids' , Ph.D. Thesis, Stanford University, USA
  9. Eriksson, K. (2002), ' Energy release rates for the penny-shaped crack in a linear piezoelectric solid ', Int. J.Fract., 116, L23-L28 https://doi.org/10.1023/A:1022690513876
  10. Feng, W.J., Su, R.K.L. and Zou, Z.Z. (2004), ' Dynamic response of multiple coplanar interface cracks between two dissimilar piezoelectric materials ', Key Engn. Mater., 261-263, 477-482 https://doi.org/10.4028/www.scientific.net/KEM.261-263.477
  11. Gu, B., Yu, S.W and Feng, X.Q. (2002a),' Transient response of an insulating crack between piezoelectric layers under mechanical and electrical impacts ', Arch. Appl. Mech., 72, 615-629 https://doi.org/10.1007/s00419-002-0239-4
  12. Gu, B., Yu, S.W and Feng, X.Q. (2002b),' Transient response of an interface crack between piezoelectric layers under mechanical impacts ', Int. J. Solids Struct., 39, 1743-1756 https://doi.org/10.1016/S0020-7683(02)00013-6
  13. lng, Y.S. and Wang, M.J. (2004), ' Transient analysis of a mode-III crack propagating in a piezoelectric medium ', Int. J. Solids Struct., 41, 6197-6214 https://doi.org/10.1016/j.ijsolstr.2004.05.019
  14. Karapetian, E., Sevotianov, I. and Kachanov, M. (2000), ' Penny-shaped and half-plane cracks in a transversely isotropic piezoelectric solid under arbitrary loading ', Arch. Appl. Mech., 70,201-229 https://doi.org/10.1007/s004199900060
  15. Kogan, L., Hui, C.Y. and Molkov, V. (1996), ' Stress and induction field of a spherical inclusion or a pennyshaped crack in a transversely isotropic piezoelectric material ', Int. J. Solids Struct., 33,2719-2737 https://doi.org/10.1016/0020-7683(95)00182-4
  16. Kwon, S.M. and Lee, K.Y. (2000), ' Transient response of a rectangular medium with a center crack ', Eur. J.Mech. A/Solids, 20, 457-468 https://doi.org/10.1016/S0997-7538(01)01137-8
  17. Li, S.F. and Mataga, P.A (1996a), ' Dynamic crack propagation in piezoelectric materials - Part 1: Electrode solution ', J. Mech. Phys. Solids, 44, 1799-1830 https://doi.org/10.1016/0022-5096(96)00055-5
  18. Li, S.F. and Mataga, P.A (1996b), ' Dynamic crack propagation in piezoelectric materials - Part 2: Vacuum solution ', J. Mech. Phys. Solids, 44, 1831-1866 https://doi.org/10.1016/0022-5096(96)00056-7
  19. Li, X.F. (2001), ' Transient response of a piezoelectric material with a semi-infinite mode-III crack under impact loads ', Int.J. Fract., 111, 119-130 https://doi.org/10.1023/A:1012208524059
  20. Li, X.F. and Fan, T.Y. (2002), ' Transient analysis of a piezoelectric strip with a permeable crack under anti-plane impact loads ', Int. J. Eng. Sci., 40, 131-143 https://doi.org/10.1016/S0020-7225(01)00039-8
  21. Li, X.F. and Lee, K.Y. (2004), ' Effects of electric field on crack growth for a penny-shaped dielectric crack in a piezoelectric layer ', J. Mech. Phys. Solids., 52, 2079-2100 https://doi.org/10.1016/j.jmps.2004.02.012
  22. Lin, S., Narita, F. and Shindo, Y. (2003), ' Electroelastic analysis of a penny-shaped crack in a piezoelectric ceramic under mode-l loading ', Mech. Res. Commu., 30, 371-386 https://doi.org/10.1016/S0093-6413(03)00031-4
  23. Miller, M.K. and Guy, W.T. (1966), ' Numerical inversion of the Laplace transform by use of Jacobi polynomials ', SIAM J. Numer. Anal., 3, 624-635 https://doi.org/10.1137/0703055
  24. Parton, V.Z. (1976), ' Fracture mechanics of piezoelectric materials ', Acta Astro., 3, 671-683 https://doi.org/10.1016/0094-5765(76)90105-3
  25. Wang, B.L., Han, J.C. and Du, S.Y. (2000),' Electroelastic fracture dynamics for multilayered piezoelectric materials under dynamic anti-plane shearing ', Int. J. Solids Struct., 37, 5219-5231 https://doi.org/10.1016/S0020-7683(99)00218-8
  26. Wang, B.L., Noda, N., Han, J.c. and Du, S'y' (2001),' A penny-shaped crack in a transversely isotropic piezoelectric layer ', Eur. J. Mech. A/Solids, 20, 997-1005 https://doi.org/10.1016/S0997-7538(01)01164-0
  27. Wang, X.Y. and Yu, S.W (2000), 'Transient response of a crack in piezoelectric strip subjected to mechanical and impacts: mode-III problem ', Int. J. Solids Struct., 37, 5795-5808 https://doi.org/10.1016/S0020-7683(99)00268-1
  28. Wang, X.Y. and Yu, S.W .(2001),' Transient response of a crack in piezoelectric strip subjected to mechanical and impacts: mode-l problem ', Mech. Mater., 33, 11-20 https://doi.org/10.1016/S0167-6636(00)00023-5
  29. Yang, F.Q. (2004),' General solutions of a penny-shaped crack in a piezoelectric material under opening mode-l loading ', Quart. J. Mech. Appl. Math., 57, 529-550 https://doi.org/10.1093/qjmam/57.4.529
  30. Yang, J.H. and Lee, K.Y. (2003a),' Penny-shaped crack in a piezoelectric cylinder under electromechanical loads ', Arch. Appl. Mech., 73, 323-336 https://doi.org/10.1007/s00419-002-00245-6
  31. Yang, J.B. and Lee, K.Y. (2003b), ' Penny-shaped crack in a piezoelectric cylinder surrounded by an elastic medium subjected to combined in-plane mechanical and electrical loads ', Int. J. Solids Struct., 40, 573-590 https://doi.org/10.1016/S0020-7683(02)00620-0

Cited by

  1. A penny-shaped interfacial crack between piezoelectric layer and elastic half-space vol.52, pp.1, 2014, https://doi.org/10.12989/sem.2014.52.1.001
  2. Three dimensional axisymmetric problems in piezoelectric media: Revisited by a real fundamental solutions based new method vol.36, pp.12, 2012, https://doi.org/10.1016/j.apm.2012.01.054
  3. Transient electromechanical cracking of finite piezoelectric bodies vol.24, pp.9, 2013, https://doi.org/10.1177/1045389X13476152
  4. A penny-shaped interface crack between a functionally graded piezoelectric layer and a homogeneous piezoelectric layer vol.44, pp.4, 2009, https://doi.org/10.1007/s11012-008-9177-8