References
- Celep, Z. (1978), ' On the axially symmetric vibration of thick circular plate ', Ingenieus-Archive, 47(6), 411-420 https://doi.org/10.1007/BF00538361
- Celep, Z. (1980),' Free vibration of some circular plates of arbitrary thickness ', J. Sound Vib., 70(3), 379-388 https://doi.org/10.1016/0022-460X(80)90306-5
- Chen, J.Y., Ding, H.J. and Hou, P.F. (2003a), ' Analytical solutions of simply supported magnetoelectroelastic circular plate under uniform loads' , J. of Zhejiang University Science, 4(5), 560-564 https://doi.org/10.1631/jzus.2003.0560
- Chen, J.Y., Ding, H.J. and Hou, P.F. (2003b), ' Three-dimensional analysis of magnetoelectroelastic rotating annualr plate' , J. of Zhejiang University (Engineering Science), 37(4),440-444
- Chen, W.Q. and Lee, K.Y. (2003), ' Alternative state space formulations for magnetoelectric thermoelasticity with transverse isotropy and the application to bending analysis of nonhomogeneous plates ', Int. J. Solids Struct., 40, 5689-5705 https://doi.org/10.1016/S0020-7683(03)00339-1
- Chen, W.Q., Lee, K.Y. and Ding, H.J. (2005), ' On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates' , J. Sound Vib., 279(1-2), 237-251 https://doi.org/10.1016/j.jsv.2003.10.033
- Deresiewicz, H. (1956), ' Symmetric flexural vibrations of a clamped circular disk' , J. Appl. Mech., 23(2), 319
- Deresiewicz, H. and Mindlin, R.D. (1955),' Axially symmetric flexural vibrations of a circular disk ', J. Appl. Mech., 22(1), 86-88
- Ding, H.J., Xu, R.Q., Chi, Y.W and Chen, W.Q. (1999), ' Free axisymmetric vibration of transversely isotropic piezoelectric circular plates' , Int. J. Solids Struct., 36(30), 4629-4652 https://doi.org/10.1016/S0020-7683(98)00206-6
- Iyengar, K.T.S.R. and Raman, P.Y. (1977), ' Free vibration of rectangular plates of arbitrary thickness ', J .Sound Vib., 54(2), 229-236 https://doi.org/10.1016/0022-460X(77)90025-6
- Iyengar, K.T.S.R. and Raman, P.Y. (1978), ' Free vibration of circular plates of arbitrary thickness ', The J. of the Acoustical Society of America, 64(4), 1088-1092 https://doi.org/10.1121/1.382068
- Kane, T.R. and Mindlin, D. (1956), ' High-frequency extensional vibration of plates ', J. Appl. Mech., 23(2), 277-283
- Li, J.Y. (2000), ' Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials ', Int. J. Eng. Sci., 38(18),1993-2011 https://doi.org/10.1016/S0020-7225(00)00014-8
- Mindlin, R.D. (1951a), ' Influence of rotatory inertia and shear on flexural motions of isotropic, elasticplate ', J. Appl. Mech., 18(1), 31-38
- Mindlin, R.D. (1951 b), ' Thickness-shear and flexural vibrations of crystal plates ', J .Appl. Phy., 22(3), 316-323 https://doi.org/10.1063/1.1699948
- Mindlin, R.D. and Deresiewicz, H. (1954), ' Thickness-shear and flexural vibration of a circular disk ', J. Appl.Phy., 25(10), 1329-1332 https://doi.org/10.1063/1.1721554
- Pan, E. (2001), ' Exact solution for simply supported and multilayered magneto-electro-elastic plates ', J .Appl.Mech., ASME, 68, 608-618 https://doi.org/10.1115/1.1380385
- Pan, E. and Heyliger, P.R. (2002),' Free vibrations of simply supported and multilayered magneto-electro-elastic plates ', J .Sound Vib., 252(3), 429-442 https://doi.org/10.1006/jsvi.2001.3693
- Pan, E. and Heyliger, P.R. (2003), ' Exact solutions for magneto-electro-elastic laminates in cylindrical bending ', Int. J. Solids Struct., 40(24), 6859-6876 https://doi.org/10.1016/j.ijsolstr.2003.08.003
- Rao, N.S.Y.K. and Das, Y.C. (1977),' A mixed method in elasticity ', J. Appl. Mech., 44(1), 51-56 https://doi.org/10.1115/1.3424013
- Sneddon, I.N. (1970), Fourier Transform. McGraw-HilI, NewYork. 3rd Edition
- Timoshenko, S. and Goodier, J.N. (1951), Theory of Elasticity, McGraw-Hill, NewYork. 3rd Edition.
- Wang, J.G, Chen, L.F. and Fang, S.S. (2003),' State vector approach to analysis of multilayered magnetoelectro- elastic plates ', Int. J .Solids Struct., 40, 1669-1680 https://doi.org/10.1016/S0020-7683(03)00027-1
Cited by
- Analytical and numerical modeling of resonant piezoelectric devices in China-A review vol.51, pp.12, 2008, https://doi.org/10.1007/s11433-008-0188-1
- Three-dimensional exact solutions for free vibrations of simply supported magneto-electro-elastic cylindrical panels vol.48, pp.12, 2010, https://doi.org/10.1016/j.ijengsci.2010.09.022
- Three-dimensional analytical solutions for the axisymmetric bending of functionally graded annular plates vol.40, pp.9-10, 2016, https://doi.org/10.1016/j.apm.2015.11.051
- An analytical solution for a multilayered magneto-electro-elastic circular plate under simply supported lateral boundary conditions vol.19, pp.6, 2010, https://doi.org/10.1088/0964-1726/19/6/065025
- Asymmetric free vibration analysis of first-order shear deformable functionally graded magneto-electro-thermo-elastic circular plates vol.233, pp.16, 2019, https://doi.org/10.1177/0954406219850598