DOI QR코드

DOI QR Code

Exact solutions of axisymmetric free vibration of transversely isotropic magnetoelectroelastic laminated circular plates

  • Chen, Jiangying (Faculty of Engineering, Ningbo University, Ningbo Institute of Technology, Zhejiang University) ;
  • Xu, Rongqiao (Department of Civil Engineering, Zhejiang University) ;
  • Huang, Xusheng (Faculty of Engineering, Ningbo University) ;
  • Ding, Haojiang (Department of Civil Engineering, Zhejiang University)
  • Received : 2005.04.11
  • Accepted : 2005.11.21
  • Published : 2006.05.30

Abstract

The axisymmetric free vibrations of transversely isotropic magnetoelectroelastic laminated circular plates are studied. Based on the three-dimensional governing equations of magnetoelectroelastic medium, the state space equations of laminated circular plates are obtained. By using the finite Hankel transform and rendering the free terms left by the transform in terms of the boundary quantities, the solutions of the state space equations are given for two kinds of boundary conditions. The frequency equations of the free vibration are derived using the propagator matrix method and the boundary conditions at top and bottom surfaces. By virtue of the inverse Hankel transform, the mode shapes are also determined. Since the solutions strictly satisfy the governing equations in the region and the boundary conditions at the edges, they are the three-dimensionally exact. Finally, the natural frequencies of such plates are tabulated and compared with those of the piezoelectric and elastic plates in the numerical example.

Keywords

References

  1. Celep, Z. (1978), ' On the axially symmetric vibration of thick circular plate ', Ingenieus-Archive, 47(6), 411-420 https://doi.org/10.1007/BF00538361
  2. Celep, Z. (1980),' Free vibration of some circular plates of arbitrary thickness ', J. Sound Vib., 70(3), 379-388 https://doi.org/10.1016/0022-460X(80)90306-5
  3. Chen, J.Y., Ding, H.J. and Hou, P.F. (2003a), ' Analytical solutions of simply supported magnetoelectroelastic circular plate under uniform loads' , J. of Zhejiang University Science, 4(5), 560-564 https://doi.org/10.1631/jzus.2003.0560
  4. Chen, J.Y., Ding, H.J. and Hou, P.F. (2003b), ' Three-dimensional analysis of magnetoelectroelastic rotating annualr plate' , J. of Zhejiang University (Engineering Science), 37(4),440-444
  5. Chen, W.Q. and Lee, K.Y. (2003), ' Alternative state space formulations for magnetoelectric thermoelasticity with transverse isotropy and the application to bending analysis of nonhomogeneous plates ', Int. J. Solids Struct., 40, 5689-5705 https://doi.org/10.1016/S0020-7683(03)00339-1
  6. Chen, W.Q., Lee, K.Y. and Ding, H.J. (2005), ' On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates' , J. Sound Vib., 279(1-2), 237-251 https://doi.org/10.1016/j.jsv.2003.10.033
  7. Deresiewicz, H. (1956), ' Symmetric flexural vibrations of a clamped circular disk' , J. Appl. Mech., 23(2), 319
  8. Deresiewicz, H. and Mindlin, R.D. (1955),' Axially symmetric flexural vibrations of a circular disk ', J. Appl. Mech., 22(1), 86-88
  9. Ding, H.J., Xu, R.Q., Chi, Y.W and Chen, W.Q. (1999), ' Free axisymmetric vibration of transversely isotropic piezoelectric circular plates' , Int. J. Solids Struct., 36(30), 4629-4652 https://doi.org/10.1016/S0020-7683(98)00206-6
  10. Iyengar, K.T.S.R. and Raman, P.Y. (1977), ' Free vibration of rectangular plates of arbitrary thickness ', J .Sound Vib., 54(2), 229-236 https://doi.org/10.1016/0022-460X(77)90025-6
  11. Iyengar, K.T.S.R. and Raman, P.Y. (1978), ' Free vibration of circular plates of arbitrary thickness ', The J. of the Acoustical Society of America, 64(4), 1088-1092 https://doi.org/10.1121/1.382068
  12. Kane, T.R. and Mindlin, D. (1956), ' High-frequency extensional vibration of plates ', J. Appl. Mech., 23(2), 277-283
  13. Li, J.Y. (2000), ' Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials ', Int. J. Eng. Sci., 38(18),1993-2011 https://doi.org/10.1016/S0020-7225(00)00014-8
  14. Mindlin, R.D. (1951a), ' Influence of rotatory inertia and shear on flexural motions of isotropic, elasticplate ', J. Appl. Mech., 18(1), 31-38
  15. Mindlin, R.D. (1951 b), ' Thickness-shear and flexural vibrations of crystal plates ', J .Appl. Phy., 22(3), 316-323 https://doi.org/10.1063/1.1699948
  16. Mindlin, R.D. and Deresiewicz, H. (1954), ' Thickness-shear and flexural vibration of a circular disk ', J. Appl.Phy., 25(10), 1329-1332 https://doi.org/10.1063/1.1721554
  17. Pan, E. (2001), ' Exact solution for simply supported and multilayered magneto-electro-elastic plates ', J .Appl.Mech., ASME, 68, 608-618 https://doi.org/10.1115/1.1380385
  18. Pan, E. and Heyliger, P.R. (2002),' Free vibrations of simply supported and multilayered magneto-electro-elastic plates ', J .Sound Vib., 252(3), 429-442 https://doi.org/10.1006/jsvi.2001.3693
  19. Pan, E. and Heyliger, P.R. (2003), ' Exact solutions for magneto-electro-elastic laminates in cylindrical bending ', Int. J. Solids Struct., 40(24), 6859-6876 https://doi.org/10.1016/j.ijsolstr.2003.08.003
  20. Rao, N.S.Y.K. and Das, Y.C. (1977),' A mixed method in elasticity ', J. Appl. Mech., 44(1), 51-56 https://doi.org/10.1115/1.3424013
  21. Sneddon, I.N. (1970), Fourier Transform. McGraw-HilI, NewYork. 3rd Edition
  22. Timoshenko, S. and Goodier, J.N. (1951), Theory of Elasticity, McGraw-Hill, NewYork. 3rd Edition.
  23. Wang, J.G, Chen, L.F. and Fang, S.S. (2003),' State vector approach to analysis of multilayered magnetoelectro- elastic plates ', Int. J .Solids Struct., 40, 1669-1680 https://doi.org/10.1016/S0020-7683(03)00027-1

Cited by

  1. Analytical and numerical modeling of resonant piezoelectric devices in China-A review vol.51, pp.12, 2008, https://doi.org/10.1007/s11433-008-0188-1
  2. Three-dimensional exact solutions for free vibrations of simply supported magneto-electro-elastic cylindrical panels vol.48, pp.12, 2010, https://doi.org/10.1016/j.ijengsci.2010.09.022
  3. Three-dimensional analytical solutions for the axisymmetric bending of functionally graded annular plates vol.40, pp.9-10, 2016, https://doi.org/10.1016/j.apm.2015.11.051
  4. An analytical solution for a multilayered magneto-electro-elastic circular plate under simply supported lateral boundary conditions vol.19, pp.6, 2010, https://doi.org/10.1088/0964-1726/19/6/065025
  5. Asymmetric free vibration analysis of first-order shear deformable functionally graded magneto-electro-thermo-elastic circular plates vol.233, pp.16, 2019, https://doi.org/10.1177/0954406219850598