References
- Bovsunovsky, A.P. and Matveev,V.V. (2000), ' Analytical approach to the detennination of dynamic characteristics of a beam with a closing crack', J. Sound Vib., 235(3), 415-434 https://doi.org/10.1006/jsvi.2000.2930
- Butcher, E.A. (1999), ' Clearance effects on bilinear normal mode frequencies', J .Sound Vib., 224(2), 305-328 https://doi.org/10.1006/jsvi.1999.2168
- Carson, R.L. (1974), ' An experimental study of the parametric excitation of a tensioned sheet with a crack like opening' , Exp. Mech., 14(2),452-458 https://doi.org/10.1007/BF02324026
- Chatti, M., Rand, R. and Mukherjee, S. (1997),' Modal analysis of a cracked beam' , J. Sound Vib., 207(2), 249-270 https://doi.org/10.1006/jsvi.1997.1099
- Chen, M. and Tang, R. (1997), ' Approximate method of response analysis of vibrations for cracked beams' , Appl. Math. Mech., 18(3), 221-228 https://doi.org/10.1007/BF02453364
- Chondros, T.G and Dimarogonas, A.D. (1980),' Identification of cracks in welded joints of complex structures' , J. Sound Vib., 69(4), 531-538 https://doi.org/10.1016/0022-460X(80)90623-9
- Chondros, T.G and Dimarogonas, A.D. (1989), ' Dynamic sensitivity of structure to cracks' , J. Vib., Acoustics, Stress, and Reliability in Design, 111, 251-256 https://doi.org/10.1115/1.3269849
- Chondros, T.G, Dimarogonas, A.D. and Yao, J. (1998), ' A continuous cracked beam vibration theory' , J. Sound Vib., 215(1), 17-34 https://doi.org/10.1006/jsvi.1998.1640
- Chondros, T.G, Dimarogonas, A.D. and Yao, J. (2001), ' Vibration of a beam with a breathing crack' , J. Sound Vib., 239( 1), 57-67 https://doi.org/10.1006/jsvi.2000.3156
- Dimarogonas, A.D. (1996), ' Vibration of cracked structure - A state of the art review ' , Eng. Fracture Mech., 5, 831-857
- Fernandez, S.J. and Navarro, C. (2002),' Fundamental frequency of cracked beams in bending vibrations: An analytical approach ', J .Sound Vib., 256(1), 17-31 https://doi.org/10.1006/jsvi.2001.4197
- Gounaris, G. and Dimarogonas, A.D. (1988), ' A finite element of a cracked prismatic beam for structural analysis ', Comput. Struct., 28(3), 309-313 https://doi.org/10.1016/0045-7949(88)90070-3
- Gudmundson, P. (1983), ' The dynamic behavior of slender structures with cross-sectional cracks', J. Mech. Phy. Solids, 31(1), 329-345 https://doi.org/10.1016/0022-5096(83)90003-0
- Hjeimstad, K.D. and Shin, S. (1996), ' Crack identifcation in a cantilever beam from modal response ', J . Sound Vib., 198(1), 527-545 https://doi.org/10.1006/jsvi.1996.0587
- Khiem, N.T and Lien, T.V. (2001),' A simplified method for natural frequency analysis of a multiple cracked beam ', J .Sound Vib., 245(4), 737-751 https://doi.org/10.1006/jsvi.2001.3585
- Khiem, N.T. and Lien, TY. (2002), ' The dynamic stiffuess matrix method in forced vibration analysis of multiple-cracked beam ' , J. Sound Vib., 254(3), 541-555 https://doi.org/10.1006/jsvi.2001.4109
- Kikidis, M.L. (1992), ' Slenderness ratio effect on cracked beam ', J. Sound Vib., 155( 1) 1-11 https://doi.org/10.1016/0022-460X(92)90641-A
- Kisa, M. (2004), ' Free vibration analysis of a cantilever composite beam with multiple cracks ' , J. Camp. Sci.Tech., 64(9), 1391-1402 https://doi.org/10.1016/j.compscitech.2003.11.002
- Kisa, M. and Brandon, J. (2000), ' Effects of closure of cracks on the dynamics of a cracked cantilever beam ' , J .Sound Vib., 238(1), 1-18 https://doi.org/10.1006/jsvi.2000.3099
- Krawczuk, M. and Ostachowicz, W.M. (1993), ' Transverse natural vibrations of a cracked beam loaded with a constant axial force ', J. Vib. and Acoustics Transactions of the ASME., 115(4), 524-528 https://doi.org/10.1115/1.2930381
- Lee, H.P. and Ng, T.Y. (1994), ' Natural frequencies and modes for the flexural vibration of a cracked beam ', J.Appl. Acoustics., 42(2), 151-163 https://doi.org/10.1016/0003-682X(94)90004-3
- Liew, K.M. and Wang, Q. (1998), ' Application of wavelet theory for crack identification in structures ' , J. Eng. Mech., 124(2), 152-157 https://doi.org/10.1061/(ASCE)0733-9399(1998)124:2(152)
- Lin, H.P. (2004), ' Direct and inverse methods on free vibration analysis of simply supported beams with a crack ' , Eng. Struct., 26(4), 427-436 https://doi.org/10.1016/j.engstruct.2003.10.014
- Murphy, K.D. and Zhang, Y. (2000), ' Vibration and stability of a cracked translating beam ', J. Sound Vib., 237(2), 319-335 https://doi.org/10.1006/jsvi.2000.3058
- Nandi, A. and Neogy, S. (2002), ' Modelling of a beam with a breathing edge crack and some observations for crack detection ', J. Vib. Control., 8(5), 673-693 https://doi.org/10.1177/1077546029296
- Narkis, Y. (1994), ' Identification of crack location in vibrating simply supported beams ', J. Sound Vib., 172(4), 549-558 https://doi.org/10.1006/jsvi.1994.1195
- Qian, G.L., Gu, S.N. and Jian, J.S. (1990), ' The dynamics behavior and crack detection of a beam with a crack ', J. Sound Vib., 138(1),233-243 https://doi.org/10.1016/0022-460X(90)90540-G
- Shen, M.H. and Pierre, C. (1990), ' Natural modes of Bemoulli-Euler beams with symmetric cracks ', J. Sound Vib., 138(1), 115-134 https://doi.org/10.1016/0022-460X(90)90707-7
- Todd, M.D. and Virgin, L.N. (1996), ' Natural frequency computations of impact oscillator ', J. Sound Vib., 194(3), 452-460 https://doi.org/10.1006/jsvi.1996.0370
- Yokoyama, T and Chen, M.C. (1998), ' Vibration analysis of edge-cracked beams using a line-spring model ', Eng. Fracture Mech., 59(3), 403-409 https://doi.org/10.1016/S0013-7944(97)80283-4
Cited by
- Fatigue crack growth, free vibrations, and breathing crack detection of aluminium alloy and steel beams vol.44, pp.7, 2009, https://doi.org/10.1243/03093247JSA527
- On the dynamics of a beam with switching crack and damaged boundaries vol.19, pp.1, 2013, https://doi.org/10.1177/1077546311428640
- Modal Analysis of Annular Plate with Crack and its Effect on Natural Frequency vol.813-814, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.813-814.910
- Nonlinear Dynamic Analysis of a Cracked Rotor-Bearing System With Fractional Order Damping vol.8, pp.3, 2013, https://doi.org/10.1115/1.4023010