DOI QR코드

DOI QR Code

Mode localization and veering of natural frequency loci in two circular plates coupled with a fluid

  • Received : 2005.04.28
  • Accepted : 2005.12.13
  • Published : 2006.04.20

Abstract

An analytical method for the free vibration of two circular plates coupled with an inviscid and compressible fluid is developed by the Rayleigh-Ritz method. The fluid is bounded by a rigid cylindrical vessel and two circular plates with an unequal thickness and diameter. It was found that the theoretical results could predict well the fluid-coupled natural frequencies with an excellent accuracy when compared with the finite element analysis results. As the fluid thickness increases or the plate thickness difference increases, an abrupt curve veering in the natural frequency loci of the neighboring modes and drastic changes in the corresponding mode shapes are observed. The mode localization frequently appears in the higher modes and in the wide gap between the plates because of a decrease in the fluid coupling owing to the fluid dispersion effect.

Keywords

References

  1. Amabili, M. (1995), 'Free-edge circular plates vibrating in water', Modal Analysis: The Int. J. of Analytical and Experimental Modal Analysis, 10, 187-202
  2. Amabili, M. (1996), 'Effect of finite fluid depth on the hydroelastic vibrations of circular and annular plates', J. Sound Vib. 193, 909-925
  3. Amabili, M. and Kwak, M.K. (1999), 'Vibration of circular plates on a free fluid surface: Effect of surface waves', J. Sound Vib., 226, 407-424 https://doi.org/10.1006/jsvi.1998.2304
  4. Amabili, M. (2000), 'Vibrations of fluid-filled hermetic cans', J. of Fluids and Struct., 14, 235-255 https://doi.org/10.1006/jfls.1999.0267
  5. Amabili, M. (2001), 'Vibrations of circular plates resting on a sloshing liquid: Solution of the fully coupled problem', J. Sound Vib., 245, 261-283 https://doi.org/10.1006/jsvi.2000.3560
  6. Bauer, H.F. (1995), 'Coupled frequencies of a liquid in a circular cylindrical container with elastic liquid surface cover', J. Sound Vib., 180, 689-704 https://doi.org/10.1006/jsvi.1995.0109
  7. Cheung, Y.K. and Zhou, D. (2002), 'Hydroelastic vibration of a circular container bottom plate using the Galerkin method', J. of Fluids Struct., 16, 561-580 https://doi.org/10.1006/jfls.2001.0430
  8. Chiba, M. (1994), 'Axisymmetric free hydroelastic vibration of a flexural bottom plate in a cylindrical tank supported on an elastic foundation', J. Sound Vib., 169, 387-394 https://doi.org/10.1006/jsvi.1994.1024
  9. Jeong, K.H. (1998), 'Natural frequencies and mode shapes of two coaxial cylindrical shells coupled with bounded fluid', J. Sound Vib., 215, 105-124 https://doi.org/10.1006/jsvi.1998.1648
  10. Jeong, K.H. (2003), 'Free vibration of two identical circular plates coupled with bounded fluid', J. Sound Vib., 260, 653-670 https://doi.org/10.1016/S0022-460X(02)01012-X
  11. Jeong, K.H. and Lee, S.C. (1998), 'Hydroelastic vibration of a liquid-filled circular cylindrical shell', Comput. Structs., 66, 173-185 https://doi.org/10.1016/S0045-7949(97)00086-2
  12. Jeong, K.H. and Kim, K.J. (2005), 'Hydroelastic vibration of a circular plate submerged in a bounded compressible fluid', J. Sound Vib., 283, 153-172 https://doi.org/10.1016/j.jsv.2004.04.029
  13. Kwak, M.K. (1991), 'Vibration of circular plates in contact with water', J. Appl. Mech., 58, 480-483 https://doi.org/10.1115/1.2897209
  14. Kim, D.O. and Lee, I.W. (1998), 'Mode localization in simply supported two-span beams of arbitrary span lengths', J. Sound Vib., 213, 952-961 https://doi.org/10.1006/jsvi.1998.1507
  15. Kwak, M.K. (1997), 'Hydroelastic vibration of circular plates', J. Sound Vib., 201, 293-303 https://doi.org/10.1006/jsvi.1996.0775
  16. Kwak, M.K. and Kim, K.C. (1991), 'Axisymmetric vibration of circular plates in contact with fluid', J. Sound Vib. 146, 381-389 https://doi.org/10.1016/0022-460X(91)90696-H
  17. Kwak, M.K. and Han, S.B. (2000), 'Effect of fluid depth on the hydroelastic vibration of free-edge circular plate', J. Sound Vib., 230, 171-185 https://doi.org/10.1006/jsvi.1999.2608
  18. Liu, J.K. and Chan, H.C. (1999), 'Mode localization and frequency loci veering in an aircraft with external stores', Struct. Eng. Mech., 8, 181-191 https://doi.org/10.12989/sem.1999.8.2.181
  19. Liu, X.L. (2002), 'Behavior of derivatives of eigenvalues and eigenvectors in curve veering and mode localization and their relation to close eigenvalues', J. Sound Vib. 256, 551-564 https://doi.org/10.1006/jsvi.2002.5010
  20. Perkins, N.C. and Mote Jr., C.D. (1986), 'Comments on curve veering in eigenvalue problems', J. Sound Vib., 106, 451-463 https://doi.org/10.1016/0022-460X(86)90191-4
  21. Pierre, C. (1988), 'Mode localization and eigenvalue loci veering phenomena in disordered structures', J. Sound Vib., 126, 485-502 https://doi.org/10.1016/0022-460X(88)90226-X
  22. Pierre, C. and Dowell, E.H. (1987), 'Localization of vibrations by structural irregularity', J. Sound Vib., 114, 549-564 https://doi.org/10.1016/S0022-460X(87)80023-8

Cited by

  1. Coupled hydroelastic vibrations of an elliptical cylindrical tank with an elastic bottom vol.26, pp.2, 2014, https://doi.org/10.1016/S1001-6058(14)60030-5
  2. Free vibration analysis of liquid-filled open rectangular containers vol.99, 2015, https://doi.org/10.1016/j.oceaneng.2015.03.003
  3. Free vibration and dynamic response of a fluid-coupled double elliptical plate system using Mathieu functions vol.75, 2013, https://doi.org/10.1016/j.ijmecsci.2013.05.012
  4. Primary Resonance Response of a Beam with a Differential Edge Settlement Attached to an Elastic Foundation vol.16, pp.6, 2010, https://doi.org/10.1177/1077546309339419
  5. On nonlinear frequency veering and mode localization of a beam with geometric imperfection resting on elastic foundation vol.332, pp.19, 2013, https://doi.org/10.1016/j.jsv.2013.03.031
  6. Free Vibration Analysis of an Axially Travelling Web with Intermediate Elastic Supports vol.09, pp.07, 2017, https://doi.org/10.1142/S1758825117501046
  7. Free vibration of multiple rectangular plates coupled with a liquid vol.74, 2013, https://doi.org/10.1016/j.ijmecsci.2013.05.011
  8. Nonlinear Frequency Veering in a Beam Resting on an Elastic Foundation vol.15, pp.11, 2009, https://doi.org/10.1177/1077546309103262
  9. Dynamic analysis of structures in frequency domain by a new set of Ritz vectors vol.39, pp.5, 2006, https://doi.org/10.12989/sem.2011.39.5.703