References
- Balasubramanian, T.S. and Subramanian, G. (1985), 'On the performance of a four-degree-of-freedom per node element for stepped beam analysis and higher frequency estimation', J. Sound Vib., 99(4), 563-567 https://doi.org/10.1016/0022-460X(85)90541-3
- Balasubramanian, T.S., Subramanian, G. and Ramani, T.S. (1990), 'Significance of very high order derivatives as nodal degrees of freedom in stepped beam vibration analysis', J. Sound Vib., 137(2), 353-356 https://doi.org/10.1016/0022-460X(90)90803-8
- Chen, D.W. and Wu, J.S. (2002), 'The exact solutions for the natural frequencies and mode shapes of nonuniform beams with multiple spring-mass system', J. Sound Vib., 255(2), 299-322 https://doi.org/10.1006/jsvi.2001.4156
- Chen, D.W. (2003), 'The exact solutions for the natural frequencies and mode shapes of non-uniform beams carrying multriple various concentrated elements', Struct. Eng. Mech., 16(2), 153-176 https://doi.org/10.12989/sem.2003.16.2.153
- De Rosa, M.A. (1994), 'Free vibrations of stepped beams with elastic ends', J. Sound Vib., 173(4), 557-563 https://doi.org/10.1006/jsvi.1994.1246
- De Rosa, M.A., Belles, P.M. and Maurizi, M.J. (1995), 'Free vibrations of stepped beams with intermediate elastic supports', J. Sound Vib., 181(5), 905-910 https://doi.org/10.1006/jsvi.1995.0177
- Epperson, J.F. (2003), An Introduction to Numerical Methods and Analysis, John Wiley & Son, Inc.
- Hamdan, M.N. and Abdel Latif, L. (1994), 'On the numerical convergence of discretization methods for the free vibrations of beams with attached inertia elements', J. Sound Vib., 169(4), 527-545 https://doi.org/10.1006/jsvi.1994.1032
- Jang, S.K. and Bert, C.W. (1989a), 'Free vibrations of stepped beams: Exact and numerical solutions', J. Sound Vib., 130(2), 342-346 https://doi.org/10.1016/0022-460X(89)90561-0
- Jang, S.K. and Bert, C.W. (1989b), 'Free vibrations of stepped beams: Higher mode frequencies and effects of steps on frequency', J. Sound Vib., 132(1), 164-168 https://doi.org/10.1016/0022-460X(89)90882-1
- Ju, F., Lee, H.P. and Lee, K.H. (1994), 'On the free vibration of stepped beams', Int. J. Solids Struct., 31, 3125-3137 https://doi.org/10.1016/0020-7683(94)90045-0
- Laura, P.A.A., Rossi, R.E., Pombo, J.L. and Pasqua, D. (1994), 'Dynamic stiffening of straight beams of rectangular cross-section: A comparison of finite element predictions and experimental results', J. Sound Vib., 150(1), 174-178 https://doi.org/10.1016/0022-460X(91)90413-E
- Lee, J. and Bergman, L.A. (1994), 'Vibration of stepped beams and rectangular plates by an elemental dynamic flexibility method', J. Sound Vib., 171(5), 617-640 https://doi.org/10.1006/jsvi.1994.1145
- Lin, S.Y. and Tsai, Y.C. (2005), 'On the natural frequencies and mode shapes of a uniform multi-span beam carrying multiple point masses', Struct. Eng. Mech., 21(3), 351-367 https://doi.org/10.12989/sem.2005.21.3.351
- Maurizi, M.J. and Belles, P.M. (1994), 'Natural frequencies of one-span beams with stepwise variable crosssection', J. Sound Vib., 168(1), 184-188 https://doi.org/10.1006/jsvi.1993.1399
- Naguleswaran, S. (2002a), 'Natural frequencies, sensitivity and mode shape details of an Euler-Bernoulli beam with one-step change in cross-section and with ends on classical supports', J. Sound Vib., 252(4), 751-767 https://doi.org/10.1006/jsvi.2001.3743
- Naguleswaran, S. (2002b), 'Vibration of an Euler-Bernoulli beam on elastic end supports and with up to three step changes in cross-section', Int. J. Mech. Sci., 44, 2541-2555 https://doi.org/10.1016/S0020-7403(02)00190-X
- Subramanian, G. and Balasubramanian, T.S. (1987), 'Beneficial effects of steps on the free vibration characteristics of beams', J. Sound Vib., 118(3), 555-560 https://doi.org/10.1016/0022-460X(87)90373-7
- Wu, J.S. and Chen, D.W. (2001), 'Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems by using the numerical assembly technique', Int. J. Numer. Methods Eng., 50, 1039-1058 https://doi.org/10.1002/1097-0207(20010220)50:5<1039::AID-NME60>3.0.CO;2-D
- Wu, J.S. and Chou, H.M. (1998), 'Free vibration analysis of a cantilever beams carrying any number of elastically mounted point masses with the analytical-and-numerical-combined method', J. Sound Vib., 213(2), 317-332 https://doi.org/10.1006/jsvi.1997.1501
- Wu, J.S. and Chou, H.M. (1999), 'A new approach for determining the natural frequencies and mode shapes of a uniform beam carrying any number of sprung masses', J. Sound Vib., 220(3), 451-468 https://doi.org/10.1006/jsvi.1998.1958
Cited by
- On the natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of concentrated elements vol.29, pp.5, 2008, https://doi.org/10.12989/sem.2008.29.5.531
- Dynamic analysis of a multi-span uniform beam carrying a number of various concentrated elements vol.309, pp.1-2, 2008, https://doi.org/10.1016/j.jsv.2007.07.015
- The influence of bending and shear stiffness and rotational inertia in vibrations of cables: An analytical approach vol.33, pp.3, 2011, https://doi.org/10.1016/j.engstruct.2010.11.026
- Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias vol.53, pp.3, 2015, https://doi.org/10.12989/sem.2015.53.3.537
- On the natural frequencies and mode shapes of a multispan Timoshenko beam carrying a number of various concentrated elements vol.319, pp.1-2, 2009, https://doi.org/10.1016/j.jsv.2008.05.022
- Free vibration of axial-loaded multi-step Timoshenko beam carrying arbitrary concentrated elements using continuous-mass transfer matrix method vol.38, 2013, https://doi.org/10.1016/j.euromechsol.2012.08.003
- Free vibration analysis of rotating tapered blades using Fourier-p superelement vol.27, pp.2, 2007, https://doi.org/10.12989/sem.2007.27.2.243
- A modified modal perturbation method for vibration characteristics of non-prismatic Timoshenko beams vol.40, pp.5, 2006, https://doi.org/10.12989/sem.2011.40.5.689