DOI QR코드

DOI QR Code

Dynamic instability analysis of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading

  • Patel, S.N. (Department of Aerospace Engineering, I.I.T. Kharagpur) ;
  • Datta, P.K. (Department of Aerospace Engineering, I.I.T. Kharagpur) ;
  • Sheikh, A.H. (Department of Ocean Engineering and Naval Architecture, I.I.T. Kharagpur)
  • Received : 2005.03.07
  • Accepted : 2005.11.22
  • Published : 2006.03.10

Abstract

The dynamic instability characteristics of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading are investigated in this paper. The eight-noded isoparametric degenerated shell element and a compatible three-noded curved beam element are used to model the shell panels and the stiffeners respectively. As the usual formulation of degenerated beam element is found to overestimate the torsional rigidity, an attempt has been made to reformulate it in an efficient manner. Moreover the new formulation for the beam element requires five degrees of freedom per node as that of shell element. The method of Hill's infinite determinant is applied to analyze the dynamic instability regions. Numerical results are presented to demonstrate the effects of various parameters like shell geometry, lamination scheme, stiffening scheme, static and dynamic load factors and boundary conditions, on the dynamic instability behaviour of laminated composite stiffened panels subjected to in-plane harmonic loads along the boundaries. The results of free vibration and buckling of the laminated composite stiffened curved panels are also presented.

Keywords

References

  1. Ahmad, S. (1970), 'Analysis of thick and thin shell structures by curved finite elements', Int. J. Num. Met. Eng., 2, 419-451 https://doi.org/10.1002/nme.1620020310
  2. Aksu, G. (1982), 'Free vibration of stiffened plates including the effect of in plane inertia', J. Appl. Mech., Trans of ASME, 49, 206-212 https://doi.org/10.1115/1.3161972
  3. Bathe, K.J. (1996), Finite Element Procedure, Prentice-Hall of India Private Limited, New Delhi
  4. Bhimaraddi, A., Carr, A.J. and Moss, P.J. (1989), 'Finite element analysis of laminated shells of revolution with laminated stiffeners', Comput. Struct., 33(1), 295-305 https://doi.org/10.1016/0045-7949(89)90153-3
  5. Bolotin, V.V. (1964), The Dynamic Stability of Elastic Systems, Holden-day, Inc.
  6. Chao, C.C. and Lee J.C. (1980), 'Vibration of eccentrically stiffened laminates', J. Composite Materials, 14, 233-244 https://doi.org/10.1177/002199838001400305
  7. Chattopadhyay, B., Sinha, P.K. and Muhkopadhyay, M. (1992), 'Finite element free vibration analysis of eccentrically stiffened composite plates', J. of Reinforced Plastics and Composites, 11(10), 1003-1034 https://doi.org/10.1177/073168449201100903
  8. Chen, L.W. and Yang, J.Y. (1990), 'Dynamic stability of laminated composite plates by finite method', Comput. Struct., 36(5), 845-851 https://doi.org/10.1016/0045-7949(90)90155-U
  9. Duffield, R.C. and Willems, N. (1972), 'Parametric resonance of stiffened rectangular plates', J. Appl. Mech., 39, 217-226 https://doi.org/10.1115/1.3422616
  10. Ferguson, G.H. and Clark, R.D. (1979), 'A variable thickness curved beam and shell stiffener with sheat deformation', Int. J. Num. Met. Eng., 14, 581-592 https://doi.org/10.1002/nme.1620140409
  11. Harik, I.E. and Guo, M. (1993), 'Finite element analysis of eccentrically stiffened plates in free vibration', Comput. Struct., 49(6), 1007-1015 https://doi.org/10.1016/0045-7949(93)90012-3
  12. Hurt, J.M. and Salam, A.E. (1971), 'Dynamic stability of plates by finite element method', J. Eng. Mech., ASCE, 97, 897-899
  13. Kidane, S., Lia, G., Helmsa, J., Panga, S. and Woldesenbetb, E. (2003), 'Buckling load analysis of grid stiffened composite cylinders', Composite Part B: Engineering, 34(1), 1-9 https://doi.org/10.1016/S1359-8368(02)00074-4
  14. Kwon, Y.W. (1991), 'Finite element analysis of layered composite plates using a higher order bending theory', Comput. Struct., 38(1), 57-62 https://doi.org/10.1016/0045-7949(91)90123-4
  15. Liao, C.L. and Reddy, J.N. (1990), 'Analysis of anisotropic, stiffened composite laminates using a continuum-based shell element', Comput. Struct., 34(6), 805-815 https://doi.org/10.1016/0045-7949(90)90351-2
  16. Liao, C.L. and Cheng, C.R. (1994), 'Dynamic stability of stiffened laminated composite plates and shells subjected to in plane pulsating forces', J. Sound Vib., 174(3), 335-351 https://doi.org/10.1006/jsvi.1994.1280
  17. Mennertas, M. and Belek, H.T. (1991), 'Dynamic stability of radially stiffened annular plates', Comput. Struct., 40(3), 651-657 https://doi.org/10.1016/0045-7949(91)90234-D
  18. Merrit, R.G. and Willems, N. (1973), 'Parametric resonance of skew stiffened plates', J. Appl. Mech., 40, 439-444 https://doi.org/10.1115/1.3423003
  19. Moorthy, J., Reddy, J.N. and Pault, R.H. (1990), 'Parametric instability of laminated composite plates with transverse shear deformation', Int. J. Solids Struct., 26(7), 801-811 https://doi.org/10.1016/0020-7683(90)90008-J
  20. Mukherjee, A. and Mukhopadhyay, M. (1987), 'Finite element free vibration of eccentrically stiffened plates', Comput. Struct., 30(6), 1303-1317 https://doi.org/10.1016/0045-7949(88)90195-2
  21. Mukhopadhyay, M. (1989), 'Vibration and stability analysis of stiffened plates by semi-analytic finite difference method, Part-I: Consideration of bending displacement only', J. Sound Vib., 130(1), 27-39 https://doi.org/10.1016/0022-460X(89)90517-8
  22. Nayak, A.N. and Bandyopadhyay, J.N. (2002), 'On free vibration of stiffened shallow shells', J. Sound Vib., 255(2), 357-382 https://doi.org/10.1006/jsvi.2001.4159
  23. Olson, M.D. and Hazell, C.R. (1977), 'Vibration studies of some integral rib-stiffened plates', J. Sound Vib., 50, 43-61 https://doi.org/10.1016/0022-460X(77)90550-8
  24. Panda, S.C. and Natarajan, R. (1979), 'Finite element analysis of laminated composite plates', Int. J. Num. Met. Eng., 14, 69-79 https://doi.org/10.1002/nme.1620140106
  25. Prusty, B.G. (2001), 'Static, dynamic, buckling and failure analysis of composite stiffened shell structures, a finite element approach', PhD thesis, Indian Institute of Technology, Kharagpur
  26. Rao, J.S. (1999), Dynamics of Plates, Narosa Publishing House, New Delhi
  27. Reddy, J.N. and Starnes, J.H. Jr (1993), 'General buckling of stiffened circular cylindrical shells according to a layerwise theory', Comput. Struct., 49(4), 605-616 https://doi.org/10.1016/0045-7949(93)90065-L
  28. Rikards, R., Chate, A and Ozolinsh, O. (2001), 'Analysis for buckling and vibrations of composite stiffened shells and plates', Compos. Struct., 51(4), 361-370 https://doi.org/10.1016/S0263-8223(00)00151-3
  29. Samanta, A. and Mukhopadhyay, M. (2004), 'Free vibration of stiffened shells by the finite element technique', European J. of Mechanics A/Solids, 23, 159-179 https://doi.org/10.1016/j.euromechsol.2003.11.001
  30. Sciuva, M.D. and Crrera, E. (1990), 'Static buckling of moderately thick, anisotropic, laminated and sandwitch cylindrical shell panels', AIAA J., 28, 1782-1793 https://doi.org/10.2514/3.10474
  31. Sivasubramonian, B., Rao, G.V. and Krishnan, A. (1999), 'Free vibration longitudinally stiffened curved panels with cutouts', J. Sound Vib., 226, 41-55 https://doi.org/10.1006/jsvi.1999.2281
  32. Srinivasan, R.S. and Chellapandi, P. (1986), 'Dynamic stability of rectangular laminated composite plates', Comput. Struct., 24(2), 233-238 https://doi.org/10.1016/0045-7949(86)90282-8
  33. Srivastava, A.K.L., Datta P.K. and Sheikh, A.H. (2002), 'Vibration and dynamic stability of stiffened plates subjected to in-plane harmonic edge loading', Int. J. Str. Stability and Dynamics, 2(2), 185-206 https://doi.org/10.1142/S0219455402000518
  34. Thomas, J. and Abbas, B.H.A (1983), 'Vibration characteristics and dynamic stability of stiffened plates', AIAA J., 277-285
  35. Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, Tokyo, McGraw-hill, Kogakusha
  36. Timoshenko, S.P. and Goodier, J.M. (1951), Theory of Elasticity, Tokyo, McGraw-hill, Kogakusha
  37. Wu, D.L. and Zhang, Z. (1991), 'Nonlinear buckling analysis of discretely stiffened cylindrical shells', Compos. Struct., 18(1), 31-45 https://doi.org/10.1016/0263-8223(91)90012-N
  38. Zeng, H. and Bert, C.W. (2001), 'A differential quadrature analysis of vibration for rectangular stiffened plates', J. Sound Vib., 241(2), 247-252 https://doi.org/10.1006/jsvi.2000.3295
  39. Zienkiewicz, O.C. (1977), The Finite Element Method, Tata Mc-Graw Hill Publishing Company Limited, New Delhi

Cited by

  1. Parametric resonance of composite skew plate under non-uniform in-plane loading vol.55, pp.2, 2015, https://doi.org/10.12989/sem.2015.55.2.435
  2. Review of Recent Literature on Static Analyses of Composite Shells: 2000-2010 vol.02, pp.03, 2012, https://doi.org/10.4236/ojcm.2012.23009
  3. Parametric Study on the Dynamic Instability Behavior of Laminated Composite Stiffened Plate vol.135, pp.11, 2009, https://doi.org/10.1061/(ASCE)0733-9399(2009)135:11(1331)
  4. Nonlinear dynamic analysis of eccentrically stiffened imperfect functionally graded doubly curved thin shallow shells vol.96, 2013, https://doi.org/10.1016/j.compstruct.2012.10.009
  5. Non-Linear dynamic pulse buckling of laminated composite curved panels vol.73, pp.2, 2006, https://doi.org/10.12989/sem.2020.73.2.181
  6. Non-linear response and buckling of imperfect laminated composite plates under in-plane pulse forces vol.235, pp.22, 2006, https://doi.org/10.1177/0954406221996391