DOI QR코드

DOI QR Code

An optimal regularization for structural parameter estimation from modal response

  • 투고 : 2004.09.09
  • 심사 : 2005.11.30
  • 발행 : 2006.03.10

초록

Solutions to the problems of structural parameter estimation from modal response using leastsquares minimization of force or displacement residuals are generally sensitive to noise in the response measurements. The sensitivity of the parameter estimates is governed by the physical characteristics of the structure and certain features of the noisy measurements. It has been shown that the regularization method can be used to reduce effects of the measurement noise on the estimation error through adding a regularization function to the parameter estimation objective function. In this paper, we adopt the regularization function as the Euclidean norm of the difference between the values of the currently estimated parameters and the a priori parameter estimates. The effect of the regularization function on the outcome of parameter estimation is determined by a regularization factor. Based on a singular value decomposition of the sensitivity matrix of the structural response, it is shown that the optimal regularization factor is obtained by using the maximum singular value of the sensitivity matrix. This selection exhibits the condition where the effect of the a priori estimates on the solutions to the parameter estimation problem is minimal. The performance of the proposed algorithm is investigated in comparison with certain algorithms selected from the literature by using a numerical example.

키워드

참고문헌

  1. Astrom, K.J. and Eykhoff, P. (1971), 'System identification - A survey', Automatica, 7, 123-162 https://doi.org/10.1016/0005-1098(71)90059-8
  2. Banan, M.R. and Hjelmstad, K.D. (1993), 'Identification of structural systems from measured response', SRS No. 579, UILU-ENG-93-2002, Civ. Engrg. Dept., Univ. of Illinois at Urbana-Champaign
  3. Bui, H.D. (1994), Inverse Problems in the Mechanics of Materials: An Introduction. CRC Press, Boca Raton
  4. Fierro, R.D., Golub, G.H., Hansen, P.C. and O'Leary, D.P. (1997), 'Regularization by truncated total least squares', Siam J. Sci. Comput., 18, 1223-1241 https://doi.org/10.1137/S1064827594263837
  5. Golub, G.H., Heath, M. and Wahba, G. (1978), 'Generalized cross-validation as a method for choosing a good ridge parameter', Technometrics, 21, 215-223 https://doi.org/10.2307/1268518
  6. Groetsch, C.W. (1984), The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman Advanced Publishing, Boston
  7. Hajela, P. and Soeiro, F.J. (1990), 'Recent developments in damage detection based on system identification methods', Struct. Optimization, 2, 1-10 https://doi.org/10.1007/BF01743515
  8. Hansen, P.C. (1998), Rank-Deficient and Discrete III-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia
  9. Hansen, P.C. (1992), 'Analysis of discrete ill-posed problems by means of the L-curve', SIAM Review, 34, 561-580 https://doi.org/10.1137/1034115
  10. Hjelmstad, K.D. (1996), 'On the uniqueness of modal parameter estimation', J. Sound Vib., 192(2), 581-598 https://doi.org/10.1006/jsvi.1996.0205
  11. Hjelmstad, K.D. and Shin, S. (1996), 'Crack identification in a cantilever beam from modal response', J. Sound Vib., 198, 527-545 https://doi.org/10.1006/jsvi.1996.0587
  12. Lee, H.S., Kim, Y.H., Park, C.J. and Park, H.W. (1999), 'A new spatial regularization scheme for the identification of geometric shapes of inclusions in finite bodies', Int. J. Num. Meth. Eng., 46, 973-992 https://doi.org/10.1002/(SICI)1097-0207(19991110)46:7<973::AID-NME730>3.0.CO;2-Q
  13. Lee, H.S., Park, C.J. and Park, H.W. (2000), 'Identification of geometric shapes and material properties of inclusions in two dimensional finite bodies by boundary parameterization', Comp. Meth. Appl. Mech. Eng., 181, 1-20 https://doi.org/10.1016/S0045-7825(99)00165-6
  14. Luenberger, D.G (1989), Linear and Nonlinear Programming (2nd edn). Addison-Wesley, Reading
  15. Mottershead, J.E. and Friswell, M.I. (1993), 'Model updating in structural dynamics: A survey', J. Sound Vib., 167, 347-375 https://doi.org/10.1006/jsvi.1993.1340
  16. Park, H.W., Shin, S. and Lee, H.S. (2001), 'Determination of an optimal regularization factor in system identification with Tikhonov regularization for linear elastic continua', Int. J. Num. Meth. Eng., 51, 1211-1230 https://doi.org/10.1002/nme.219
  17. Pothisiri, T. and Hjelmstad, K.D. (2002), 'Strategy for finding a near-optimal measurement set for parameter estimation from modal response', J. Sound Vib., 257, 89-106 https://doi.org/10.1006/jsvi.2002.5030
  18. Yeo, I.H., Shin, S., Lee, H.S. and Chang, S.P. (2000), 'Statistical damage assessment of framed structures from static response', J. Engrg. Mech., ASCE, 126, 414-421 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:4(414)