DOI QR코드

DOI QR Code

Mechanical analysis of non-uniform beams resting on nonlinear elastic foundation by the differential quadrature method

  • Hsu, Ming-Hung (Department of Electrical Engineering, National Penghu University)
  • Received : 2005.01.20
  • Accepted : 2005.11.08
  • Published : 2006.02.20

Abstract

A new approach using the differential quadrature method (DQM) is derived for analysis of non-uniform beams resting on nonlinear media in this study. The influence of velocity dependent viscous damping and strain rate dependent viscous damping is investigated. The results solved using the DQM have excellent agreement with the results solved using the FEM. Numerical results indicated that the DQM is valid and efficient for non-uniform beams resting on non-linear media.

Keywords

References

  1. Akbarov, S.D. and Kocaturk, T. (1997), 'On the bending problems of anisotropic plates resting on elastic foundations that react in compression only', Int. J. Solids Struct., 34(8),3673-3689 https://doi.org/10.1016/S0020-7683(96)00227-2
  2. Beaufait, F.W and Hoadley, P.W (1980), 'Analysis of elastic beams on nonlinear foundation', Comput. Struct., 12(5), 669-676 https://doi.org/10.1016/0045-7949(80)90168-6
  3. Bellman, R. and Casti, J. (1971), 'Differential quadrature and long-term integration', J. Mathematical Analysis and Application, 34, 235-238 https://doi.org/10.1016/0022-247X(71)90110-7
  4. Bellman, R.E., Kashef, B.G and Casti, J. (1972), 'Differential quadrature: A technique for rapid solution of nonlinear partial differential equations', J. Computational Physics, 10, 40-52 https://doi.org/10.1016/0021-9991(72)90089-7
  5. Bert, C.W and Malik, M. (1996a), 'Free vibration analysis of tapered rectangular plates by differential quadrature method: A semi-analytical approach', J. Sound Vib., 190(1), 41-63 https://doi.org/10.1006/jsvi.1996.0046
  6. Bert, C.W and Malik, M. (1996b), 'Differential quadrature method in computational mechanics', Appl. Mech. Review, 49(1), 1-28 https://doi.org/10.1115/1.3101882
  7. Bert, C.W., Jang, S.K. and Striz, A.G (1988), 'Two new approximate methods for analyzing free vibration of structural components', Int. J. Numer. Meth. Eng., 28, 561-577
  8. Bert, C.W, Wang, X. and Striz, A.G (1993), 'Differential quadrature for static and free vibration analysis of anisotropic plates', Int. J. Solids Struct., 30, 1737-1744 https://doi.org/10.1016/0020-7683(93)90230-5
  9. Bert, C.W, Wang, X. and Striz, A.G (1994a), 'Static and free vibration analysis of beams and plates by differential quadrature method', Acta Mechanica, 102, 11-24 https://doi.org/10.1007/BF01178514
  10. Bert, C.W., Wang, X. and Striz, A.G (1994b), 'Convergence of the DQ method in the analysis of anisotropic plates', J. Sound Vib., 170, 140-144 https://doi.org/10.1006/jsvi.1994.1051
  11. Celep, Z. (1998a), 'Circular plate on tensionless Winkler foundations', J. Eng. Mech., 114(10), 1723-1739
  12. Celep, Z. (1998b), 'Rectangular plates resting on tensionless elastic foundation', J. Eng. Mech., 114(12), 2083-2092
  13. Chen, C.N. (1998), 'Solution of beam on elastic foundation by DEQM', J. Eng. Mech., 124(12), 1381-1384 https://doi.org/10.1061/(ASCE)0733-9399(1998)124:12(1381)
  14. Chen, W and Zhong, T. (1997), 'The study on the nonlinear computations of the DQ and DC methods', Numerical Methods for Partial Differential Equations, 13, 57-75 https://doi.org/10.1002/(SICI)1098-2426(199701)13:1<57::AID-NUM5>3.0.CO;2-L
  15. Chen, W, Shu, C., He, W and Zhong, T. (2000), 'The application of special matrix product to differential quadrature solution of geometrically nonlinear bending of orthotropic rectangular plates', Comput. Struct., 74, 65-76 https://doi.org/10.1016/S0045-7949(98)00320-4
  16. Du, H., Liew, K.M. and Lim, M.K. (1996), 'Generalized differential quadrature method for buckling analysis', J. Eng. Mech., 122(2), 95-100 https://doi.org/10.1061/(ASCE)0733-9399(1996)122:2(95)
  17. Feng, Y. and Bert, C.W. (1992), 'Application of the quadrature method to flexural vibration analysis of a geometrically nonlinear beam', Nonlinear Dynamics, 3, 13-18 https://doi.org/10.1007/BF00045468
  18. Hong, T., Teng, J.G and Luo, Y.F. (1999), 'Axisymmetric shells and plates on tensionless elastic foundations', Int. J. Solids Struct, 25, 4166-4299
  19. Jang, S.K, Bert, C.W. and Striz, A.G (1989), 'Application of differential quadrature to static analysis of structural components', Int. J. Numer. Meth. Eng., 28, 561-577 https://doi.org/10.1002/nme.1620280306
  20. Kuo, Y.H. and Lee, S.Y. (1994), 'Deflection of nonuniform beams resting on a nonlinear elastic foundation', Comput. Struct., 51(5),513-519 https://doi.org/10.1016/0045-7949(94)90058-2
  21. Li, H. and Dempsey, J.P. (1988), 'Unbonded contact of a square plate on an elastic half-space or a Winkler foundation', J. Appl. Mech., 55, 430-436 https://doi.org/10.1115/1.3173694
  22. Lin, L. and Adams, G.G (1987), 'Beam on tensionless elastic foundation', J. Eng. Mech. Div., 113, 542-553 https://doi.org/10.1061/(ASCE)0733-9399(1987)113:4(542)
  23. Ma, T.F. (2004), 'Positive solutions for a beam equation on a nonlinear elastic foundation', Mathematical and Computer Modelling, 39, 1195-1201 https://doi.org/10.1016/j.mcm.2004.06.001
  24. Malik, M. and Bert, C.W. (1995), 'Differential quadrature solutions for steady state incompressible and compressible lubrication problems', J. of Tribology, 116, 296-302
  25. Malik, M. and Bert, C.W. (1996), 'Implementing multiple boundary conditions in the DQ solution of higherorder PDE's application to free vibration of plates', Int. J. Numer. Meth. Eng., 39, 1237-1258 https://doi.org/10.1002/(SICI)1097-0207(19960415)39:7<1237::AID-NME904>3.0.CO;2-2
  26. Mishra, R.C. and Chakrabarti, S.K. (1996), 'Rectangular plates resting on tensionless elastic foundation: Some new results', J. Eng. Mech., 122(4), 287-385
  27. Quan, J.R. and Chang, C.T. (1989a), 'New insights in solving distributed system equations by the quadrature method-I. Analysis', Computers in Chemical Engineering, 13, 779-788 https://doi.org/10.1016/0098-1354(89)85051-3
  28. Quan, J.R. and Chang, C.T. (1989b), 'New insights in solving distributed system equations by the quadrature method-II. Numerical experiments', Computers in Chemical Engineering, 13, 1017-1024 https://doi.org/10.1016/0098-1354(89)87043-7
  29. Sharma, S.P. and DasGupta, S. (1975), 'Bending problem of axially constrained beams on nonlinear elastic foundations', Int. J. Solids Struct., 11(7-8), 853-859 https://doi.org/10.1016/0020-7683(75)90007-4
  30. Shen, H.S. and Yu, L. (2004), 'Nonlinear bending behavior of Reissner-Mindlin plates with free edges resting on tensionless elastic foundations', Int. J. Solids Struct, 41, 4809-4825 https://doi.org/10.1016/j.ijsolstr.2004.02.013
  31. Sherbourne, A.N. and Pandey, M.D. (1991), 'Differential quadrature method in the buckling analysis of beams and composite plates', Comput. Struct., 40, 903-913 https://doi.org/10.1016/0045-7949(91)90320-L
  32. Silva, A.R.D., Silveira, R.A.M. and Goncalves, P.B. (2001), 'Numerical methods for analysis of plates on tensionless elastic foundations', Int. J. Solids Struct, 38(10-13),2083-2100 https://doi.org/10.1016/S0020-7683(00)00154-2
  33. Striz, A.G, Chen, W. and Bert, C.W. (1994), 'Static analysis of structures by the quadrature element method (QEM)', Int. J. Solids Struct, 31, 2807-2818 https://doi.org/10.1016/0020-7683(94)90070-1
  34. Tomasiello, S. (1998), 'Differential quadrature method: Application to initial-boundary-value problems', J. Sound Vib., 218(4), 573-585 https://doi.org/10.1006/jsvi.1998.1833
  35. Tsai, N.C. and Westmann, R.E. (1967), 'Beams on tensionless foundation', J. Eng. Mech. Div., 93, 1-12
  36. Weitsman, Y. (1970), 'On foundations that react in compression only', J. Appl. Mech., 37, 1019-1030 https://doi.org/10.1115/1.3408653
  37. Weitsman, Y. (1972), 'A tensionless contact between a beam and an elastic half-space', Int. J. Eng. Sci., 10, 73-81 https://doi.org/10.1016/0020-7225(72)90075-4
  38. Xiao, J.R. (2001), 'Boundary element analysis of unilateral supported Reissner plates on elastic foundations', Comput. Mech., 27(1), 1-10 https://doi.org/10.1007/s004660000207

Cited by

  1. A semi-analytic approach for the nonlinear dynamic response of circular plates vol.33, pp.12, 2009, https://doi.org/10.1016/j.apm.2009.03.007
  2. Dynamic analysis of a simply supported beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes techniques under three-to-one internal resonance condition vol.70, pp.2, 2012, https://doi.org/10.1007/s11071-012-0520-1
  3. A Semianalytical Method for Nonlinear Vibration of Euler-Bernoulli Beams with General Boundary Conditions vol.2010, 2010, https://doi.org/10.1155/2010/591786
  4. Response of a completely free beam on a tensionless Pasternak foundation subjected to dynamic load vol.37, pp.1, 2011, https://doi.org/10.12989/sem.2011.37.1.061