DOI QR코드

DOI QR Code

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S. (Faculty of Civil Engineering, Technical University of Kosice) ;
  • Tomko, M. (Faculty of Civil Engineering, Technical University of Kosice) ;
  • Brda, J. (Faculty of Civil Engineering, Technical University of Kosice)
  • Received : 2005.01.17
  • Accepted : 2005.10.06
  • Published : 2006.01.30

Abstract

In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

Keywords

References

  1. AI-Quassab, M. and Nair, S. (2003), 'Wavelet-Galerkin method for free vibrations of elastic cable', J. Eng. Mech., 129(3), 350-357 https://doi.org/10.1061/(ASCE)0733-9399(2003)129:3(350)
  2. Brew, J.S. and Lewis, W.J. (2003), 'Computational form-finding of tension membrane structures - Non-finite element approaches: Part 1. Use of cubic splines in finding minimal surface membranes', Int. J. Numer. Meth. Eng., 56(5), 651-668 https://doi.org/10.1002/nme.579
  3. Buchholdt, H.A. (1998), Introduction to Cable Roof Structures, 2nd edition, Cambridge University Press, Cambridge
  4. Cannarozzi, M. (1987), 'A minimum principle for tractions in the elastostatics of cable networks', Int. J. Solids Struct., 23(1), 551-568 https://doi.org/10.1016/0020-7683(87)90017-5
  5. Cheng, J., Xiao, R. and Jiang, J. (2004), 'Probabilistic determination of initial cable forces of cable-stayed bridges under dead loads', Struct. Eng. Mech., An Int. J., 17(2)., 267-279 https://doi.org/10.12989/sem.2004.17.2.267
  6. Contri, L. and Schrefler, B.A. (1977), 'A stability investigation of cable suspended pipelines', Int. J. Numer. Meth. Eng., 11(3), 521-531 https://doi.org/10.1002/nme.1620110310
  7. Contro, R., Maier, G. and Zavelani, A. (1975), 'Inelastic analysis of suspension structures by nonlinear programming', Comput. Meth. Appl. Mech. Eng., 5(1), 127-143 https://doi.org/10.1016/0045-7825(75)90050-X
  8. COSMOS/M User's Manual - Version Geostar 2.8. (2002), Structural Research Analysis Centre, Los Angeles
  9. Gasparini, D. and Gautam, V. (2002), 'Geometrically nonlinear static behavior of cable structures', J. Struct. Eng., ASCE, 128(10), 1317-1329 https://doi.org/10.1061/(ASCE)0733-9445(2002)128:10(1317)
  10. Gattulli, V., Martinelli, L., Perotti, F. and Vestroni, F. (2004), 'Nonlinear oscillations of cables under harmonic loading using analytical and finite element models', Comput. Meth. Appl. Mech. Eng., 193(1-2), 69-85 https://doi.org/10.1016/j.cma.2003.09.008
  11. Gosling, P.D. and Korban, E.A. (2001), 'A bendable finite element for the analysis of flexible cable structures', Finite Elements in Analysis and Design, 38(1), 32-45
  12. Greenberg, D.P. (1970), 'Inelastic analysis of suspension roof-structures', J. Struct. Div., ASCE, 96(ST 3), 905-930
  13. Hong, N.K., Chang, S. and Lee, S. (2002), 'Development of ANN-based preliminary structural design systems for cable-stayed bridges', Advanced in Engineering Software, 33(2), 85-96 https://doi.org/10.1016/S0965-9978(01)00057-6
  14. Irvine, H.M. (1981), Cable Structures, The MIT Press, Cambridge, Mass
  15. Ivanyi, P. and Topping, B.H.V. (2002), 'A new graph representation for cable-membrane structures', Advanced in Engineering Software, 33(5), 273-279 https://doi.org/10.1016/S0965-9978(02)00019-4
  16. Jayaraman, H.B. and Knudson, W.C. (1981), 'A curved element for the analysis of cable structures', Comput. Struct., 14(3-4),325-333 https://doi.org/10.1016/0045-7949(81)90016-X
  17. Jonatowski, J.J. and Bimstiel, C. (1970), 'Inelastic stiffened suspension cable structures', J. Struct. Div., ASCE, 96(6), 1143-1166
  18. Kanno, Y., Ohsaki, M. and Ito, J. (2002), 'Large-deformation and friction analysis of non-linear elastic cable networks by second-order cone programming', Int. J. Numer. Meth. Eng., 55(9),1079-1114 https://doi.org/10.1002/nme.537
  19. Kanno, Y., and Ohsaki, M. (2003), 'Minimum principle of complementary energy of cable networks by using second-order cone programming', Int. J. Solids Struct., 40(17), 4437-4460 https://doi.org/10.1016/S0020-7683(03)00215-4
  20. Kassimali, A. and Parsi-Feraidoonian, H. (1987), 'Strength of cable trusses under combined loads', J. Struct. Eng., ASCE, 113(5), 907-924 https://doi.org/10.1061/(ASCE)0733-9445(1987)113:5(907)
  21. Kim, H., Shinozuka, M. and Chang, S. (2004), 'Geometrically nonlinear buffeting response of a cable-stayed bridge', J. Eng. Mech., 130(7), 848-857 https://doi.org/10.1061/(ASCE)0733-9399(2004)130:7(848)
  22. Kmet, S. (1994), 'Rheology of prestressed cable structures', Advances in Finite Element Techniques, M. Papadrakakis and B.H.V. Topping (Editors), Civil-Comp Press, Edinburgh, 185-200
  23. Kmet, S. (2004), 'Non-linear rheology of tension structural element under single and variable loading history Part I: Theoretical derivations', Stntct. Eng. Mech., An Int. J., 18(5), 565-589
  24. Kmet, S. and Holickova, L. (2004), 'Non-linear rheology of tension structural element under single and variable loading history Part II: Creep of steel rope - examples and parametrical study', Struct. Eng. Mech., An Int. J., 18(5), 591-607 https://doi.org/10.12989/sem.2004.18.5.591
  25. Kwan, A.S.K. (2003), 'Analysis of geometrically nonlinear cable structures', In: Progress in Civil and Stntctural Engineering Computing, B.H.V. Topping (Editor), Saxe-Coburg Publications, Stirling, Scotland, 149-170
  26. Lefik, M. and Schrefler, B.A. (2002), 'Artificial neural network for parameter identifications for an elasto-plastic model of superconducting cable under cyclic loading', Comput. Stntct., 80(22), 1699-1713 https://doi.org/10.1016/S0045-7949(02)00162-1
  27. Levy, R. and Spillers, W. (1995), Analysis of Geometrically Nonlinear Stntctures. Kluwer Academic Publishers, London
  28. Lewis, W.J. (2003), Tension Stntctures: Form and Behaviour, Thomas Telford, Warwick
  29. Murray, T.M. and Willems, N. (1971), 'Analysis of inelastic suspension structures', J. Struct. Div., ASCE, 97(ST 12), 2791-2806
  30. Palkowski, S. (1998), 'Analysis of cable in elasto-plastic range', Stahlbau, 67, H.10, S., 802-805 (in German) https://doi.org/10.1002/stab.199802790
  31. Panagiotopoulos, P.D. (1976), 'A variational inequality approach to the inelastic stress-unilateral analysis of cable-structures', Comput. Stntct., 6(1), 133-139 https://doi.org/10.1016/0045-7949(76)90063-8
  32. Saafan, S.A. (1970), 'Theoretical analysis of suspension roofs', J. Struct. Div., ASCE, 96(2), 393-405
  33. Schrefler, B.A., Odorizzi, S. and Wood, R.D. (1983) 'A total lagrangian geometrically non-linear analysis of combined beam and cable structures', Comput. Stntct., 17(1), 115-127 https://doi.org/10.1016/0045-7949(83)90036-6
  34. Switka, P. (1988), 'Problems of cable constructions analysis', Advances in Mechanics, 11(4),3-51
  35. Talvik, I. (2001), 'Finite element modelling of cable networks with flexible supports', Comput. Stntct., 79(26-28), 2443-2450 https://doi.org/10.1016/S0045-7949(01)00077-3
  36. Tezcan, S.S. (1968), 'Discussion of 'Numerical solution of nonlinear structures', by T.J. Poskitt, J. Struct. Div., ASCE, 94(6), 1613-1623
  37. Volokh, K.Yu., Vilnay, O. and Averbuh, L. (2003), 'Dynamics of cable structures', J. Eng. Mech., 129(2), 175-180 https://doi.org/10.1061/(ASCE)0733-9399(2003)129:2(175)
  38. Wang, L. and Xu, Y.L. (2003), 'Wind-min-induced vibration of cable: An analytical model (1)', Int. J. Solids Struct., 40(5), 1265-1280 https://doi.org/10.1016/S0020-7683(02)00582-6
  39. Zhou, B, Accorsi, M.L. and Leonard, J.W. (2004), 'Finite element formulation for modeling sliding cable elements', Comput. Struct., 82(2-3), 271-280 https://doi.org/10.1016/j.compstruc.2003.08.006

Cited by

  1. Postelastic Analysis of Cable Trusses vol.141, pp.10, 2015, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001227