참고문헌
- Babuska, I., Szabo, B.A. and Katz, I.N. (1981), 'The p-version of the finite element method', SIAM Journal on Numerical Analysis, 18, 515-545 https://doi.org/10.1137/0718033
- Bardell, N.S. (1989), 'The application of symbolic computing to hierarchical finite element method', Int. J. Num. Meth. Eng., 28, 1181-1204 https://doi.org/10.1002/nme.1620280513
- Bardell, N.S. (1992), 'Free vibration analysis of a flat plate using the hierarchical finite element method', J. Sound Vib., 151, 263-289
- Bardell, N.S. (1992), 'The free vibration of skew plates using the hierarchical finite element method', Comput. Struct., 45(5), 841-874 https://doi.org/10.1016/0045-7949(92)90044-Z
- Barton, M.V. (1951), 'Vibration of rectangular and skew cantilever plates', ASME J. Appl. Mech., 18,129-134
- Cote, A. and Charron, F. (2001), 'On the selection of p-version shape functions for plate vibration problems', Compu. Struct., 79, 119-130 https://doi.org/10.1016/S0045-7949(00)00115-2
- Dokainish, M.A. and Rawtani, S. (1971), 'Vibration analysis of rotating cantilever plates', Int. J. Num. Meth. Eng., 3, 233-248 https://doi.org/10.1002/nme.1620030208
- Gordon, W.J. and Hall, C.A. (1973), 'Transfinite element methods: Blending-function interpolation over arbitrary curved element domains', Numer. Mathe, 21, 109-129 https://doi.org/10.1007/BF01436298
- Hamza-cherif, S.M. and Houmat, A. (2004), 'Natural frequencies of rotating flexible beams by using hierarchical finite element method', Proc. of 8th Pan. Amer. Cong. of Appl. Mech., Havana, 10, 101-104
- Houmat, A. (1997), 'An alternative hierarchical finite element method formulation applied to plate vibrations', J. Sound Vib., 206(2), 201-215 https://doi.org/10.1006/jsvi.1997.1076
- Houmat, A. (2001), 'A sector Fourier p-element applied to free vibration analysis of sector plates', J. Sound Vib., 243(2), 269-282 https://doi.org/10.1006/jsvi.2000.3410
- Kane, T., Ryan, R. and Banerjee, A. (1987), 'Dynamics of a cantilever beam attached to a moving base', J. of Guidance, Control and Dynamics, 10, 139-151 https://doi.org/10.2514/3.20195
- Langley, R.S. and Bardell, N.S. (1998), 'A review of current analysis capabilities applicable to the high frequency vibration prediction of aerospace structures', The Aeronautical Journal, 102, 287-297
- Leissa, A. (1974), 'On a curve veering', J of Applied Mathematics and Physics, 25, 99-111 https://doi.org/10.1007/BF01602113
- Meirovitch, L. and Baruh, H. (1983), 'On the inclusion principle for the hierarchical finite element method', Int. J. Num. Meth. Eng., 19, 281-291 https://doi.org/10.1002/nme.1620190209
- Putter, S. and Manor, H. (1967), 'Natural frequencies of radial rotating beams', J. Sound Vib., 56, 175-185 https://doi.org/10.1016/S0022-460X(78)80013-3
- Ramamurti, V. and Kielb, R. (1984), 'Natural frequencies of twisted rotating plates', J. Sound Vib., 97(3), 429-449 https://doi.org/10.1016/0022-460X(84)90271-2
- Southwell and Gough (1921), 'The free transverse vibration of airscrew blades', British A.R.C, Report and Memoranda, 655
- Szabo, B.A. and Sahrmann, G.J. (1988), 'Hierarchical plate and shells models based on p-extension', Int. J. Num. Meth. Eng., 26, 1855-1881 https://doi.org/10.1002/nme.1620260812
- Szabo, B.A. and Babuska, I. (1991), Finite Element Analysis, John Wiley & Sons. Inc., New York
- Yoo, H., Ryan, R. and Scott, R. (1995), 'Dynamics of flexible beams undergoing overall motions', J. Sound Vib., 10, 139-148
- Yoo, H. and Chung, J. (2001), 'Dynamics of rectangular plates undergoing prescribed overall motions', J. Sound Vib., 239, 123-137 https://doi.org/10.1006/jsvi.2000.3111
- Yoo, H. and Pierre, C. (2003), 'Modal characteristic of a rotating rectangular cantilever plate', J. Sound Vib., 259(1), 81-96 https://doi.org/10.1006/jsvi.2002.5182
- Zhu, D.C. (1986), 'Development of hierarchical finite element method at BIAA', Proc. of the Int. Conf. on Computational Mechanics, Tokyo, I, 123-128
피인용 문헌
- Free vibration analysis of variable stiffness composite laminate plate with circular cutout 2017, https://doi.org/10.1080/14484846.2017.1385694
- Natural frequencies of thin plates by means of the finite element method using a conditioned conforming quadrilateral element vol.29, pp.5, 2008, https://doi.org/10.12989/sem.2008.29.5.599
- Free vibration analysis of composite and sandwich plates by alternative hierarchical finite element method based on Reddy’s C1 HSDT vol.18, pp.4, 2016, https://doi.org/10.1177/1099636215603033
- Free Vibration Analysis of Rotating Mindlin Plates with Variable Thickness vol.17, pp.04, 2017, https://doi.org/10.1142/S0219455417500468
- Free vibration analysis of composite laminated and sandwich plate with circular cutout pp.1530-7972, 2018, https://doi.org/10.1177/1099636218811393
- Vibration analysis of variable stiffness laminated composite sandwich plates pp.1537-6532, 2019, https://doi.org/10.1080/15376494.2018.1524951
- Influence of various setting angles on vibration behavior of rotating graphene sheet: continuum modeling and molecular dynamics simulation vol.25, pp.5, 2006, https://doi.org/10.1007/s00894-019-3996-5
- Analytical solution for vibration characteristics of rotating graphene nanoplatelet-reinforced plates under rub-impact and thermal shock vol.29, pp.None, 2006, https://doi.org/10.1177/2633366x20933651
- Free vibration of composite laminated plate with complicated cutout vol.48, pp.2, 2006, https://doi.org/10.1080/15397734.2019.1633341