참고문헌
- Antman, S.S. (1972), 'The theory of rods', 641-703, in: C. TruesdeII (Ed.), Handbuch der Physik, Vol. VI a/2, Springer Verlag, Berlin
- Asplund, S.O. (1961), 'Deflection theory of arches', J. Struct. Div., ASCE, 87, ST7, 125-149
- Atluri, S.N., Iura, M. and Vasudevan, S. (2001), 'A consistent theory of finite stretches and finite rotations in space-curved beams of arbitrary cross-section', Comput. Mech., 27, 271-281 https://doi.org/10.1007/s004660100234
- Benlemlih, A. and E1 Ferrichia, M.E.A. (2002), 'A mixed finite element method for the arch problem', Appl. Math. Model., 26, 17-36 https://doi.org/10.1016/S0307-904X(01)00039-7
- Cinemre, V. (1982), 'Strain-displacement relations in rod theory', ITU Dergisi, 40, 1-6, (In Turkish)
- Dawe, D.J. (1974), 'Curved finite elements for the analysis of shallow and deep arches', Comput. Struct., 4, 559-580 https://doi.org/10.1016/0045-7949(74)90007-8
- Huddleston, J.V. (1968), 'Finite deflections and snap-through of high circular arches', J. Appl. Mech., 35(4), 763-769 https://doi.org/10.1115/1.3601302
- Kapania, R.K. and Li, J. (2003), 'A formulation and implementation of geometricalIy exact curved beam elements incorporating finite strains and finite rotations', Comput. Mech., 30, 444-459 https://doi.org/10.1007/s00466-003-0422-7
- Kim, J.G. and Kim, Y.Y. (1998), 'A new higher-order hybrid-mixed curved beam element', Int. J. Numer. Meth Eng., 43, 925-940 https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<925::AID-NME457>3.0.CO;2-M
- Lee, P-G and Sin, H-C. (1994), 'Locking-free curved beam element based on curvature', Int. J. Numer. Meth. Eng., 37, 989-1007 https://doi.org/10.1002/nme.1620370607
- Litewka, P. and Rakowski, J. (1998), 'The exact thick arch finite element', Comput. Struct., 68, 369-379 https://doi.org/10.1016/S0045-7949(98)00051-0
- Love, A.E.H. (1944), A Treatise on the Mathematical Theory of Elasticity, Dover Publication, New York
- Raveendranath, P., Singh, G. and Pradhan, B. (1999), 'Two-noded locking-free shear flexible curved beam element', Int. J. Numer. Meth. Engng., 44, 265-280 https://doi.org/10.1002/(SICI)1097-0207(19990120)44:2<265::AID-NME505>3.0.CO;2-K
- Ray, D. (2003), 'c-type method of unified CAMG and FEA. Part 1: Beam and arch mega-elements-3D linear and 2D non-linear', Int. J Numer. Meth. Engng., 58, 1297-1320 https://doi.org/10.1002/nme.816
- Reissner, E. (1972), 'On one-dimensional finite strain beam theory: The plane problem', J. Appl. Math. Phys. (ZAMP), 23, 795-804 https://doi.org/10.1007/BF01602645
- Reissner, E. (1973), 'On one-dimensional large displacement finite strain beam theory', Stud Appl. Math., 52, 87-95 https://doi.org/10.1002/sapm197352287
- Rubin, M.B. (2000), Cosserat Theories: Shells, Rods and Points, Kluwer Academic Publishers, The Netherlands
- Rubin, M.B. (2004), 'Buckling of elastic shallow arches using the theory of cosserat point', J Eng. Mech., 130(2), 216-224 https://doi.org/10.1061/(ASCE)0733-9399(2004)130:2(216)
- Schulz, M. and Filippou, F.C. (2001), 'Non-linear spatial Timoshenko beam element with curvature interpolation', Int. J Numer. Meth. Eng., 50, 761-785 https://doi.org/10.1002/1097-0207(20010210)50:4<761::AID-NME50>3.0.CO;2-2
-
Stolarski, H. and Belytschko, T. (1983), 'Shear and membrane locking in curved
$C^\circ$ elements', Comput. Meth. Appl. Mech. Eng., 41, 279-296 https://doi.org/10.1016/0045-7825(83)90010-5 - Tessler, A. and Spiridigliozzi, L. (1986), 'Curved beam elements with penalty relaxation', Int. J Numer. Meth. Eng., 23, 2245-2262 https://doi.org/10.1002/nme.1620231207
- Tufekci, E. and Arpaci, A. (1998), 'Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotatory inertia effects', J. Sound Vib., 209, 845-856 https://doi.org/10.1006/jsvi.1997.1290
- Tufekci, E. (2001), 'Exact solution of free in-plane vibration of shallow circular arches', Int. J Struct. Stab. Dynam., 1, 409-428 https://doi.org/10.1142/S0219455401000226
피인용 문헌
- A new two-noded curved beam finite element formulation based on exact solution vol.33, pp.2, 2017, https://doi.org/10.1007/s00366-016-0470-1
- Exact solution for in-plane static problems of circular beams made of functionally graded materials vol.44, pp.4, 2016, https://doi.org/10.1080/15397734.2015.1121398
- Analytical formulation and solution of arches defined in global coordinates vol.60, 2014, https://doi.org/10.1016/j.engstruct.2013.12.004
- A unified formulation for static behavior of nonlocal curved beams vol.59, pp.3, 2016, https://doi.org/10.12989/sem.2016.59.3.475
- In-Plane Static Analysis of Nonlocal Curved Beams with Varying Curvature and Cross-Section vol.08, pp.01, 2016, https://doi.org/10.1142/S1758825116500101
- Analytical Stiffness Matrix for Curved Metal Wires vol.8, 2018, https://doi.org/10.1016/j.prostr.2017.12.007
- Out-of-plane dynamic stability analysis of curved beams subjected to uniformly distributed radial loading vol.46, pp.11, 2011, https://doi.org/10.1007/s10778-011-0426-5
- Strong and weak form solutions of curved beams via Carrera’s unified formulation pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1510066
- Response of circular tunnel with imperfect interface bonding in layered ground subjected to obliquely incident plane P or SV wave vol.42, pp.16, 2018, https://doi.org/10.1002/nag.2844
- A new finite element formulation for free vibrations of planar curved beams pp.1539-7742, 2018, https://doi.org/10.1080/15397734.2018.1456343
- Free vibration analysis of rotating tapered blades using Fourier-p superelement vol.27, pp.2, 2006, https://doi.org/10.12989/sem.2007.27.2.243
- Structural matrices of a curved-beam element vol.33, pp.3, 2009, https://doi.org/10.12989/sem.2009.33.3.307
- Closed-form solutions on bending of cantilever twisted Timoshenko beams under various bending loads vol.35, pp.2, 2006, https://doi.org/10.12989/sem.2010.35.2.261
- Locking-free curved elements with refined kinematics for the analysis of composite structures vol.337, pp.None, 2006, https://doi.org/10.1016/j.cma.2018.03.042
- Closed-form solutions for elastic tapered parabolic arches under uniform thermal gradients vol.55, pp.5, 2006, https://doi.org/10.1007/s11012-020-01153-x
- Application of Inverse Finite Element Method to Shape Sensing of Curved Beams vol.20, pp.24, 2006, https://doi.org/10.3390/s20247012