DOI QR코드

DOI QR Code

Analytical solutions of in-plane static problems for non-uniform curved beams including axial and shear deformations

  • Tufekci, Ekrem (Istanbul Technical University, Faculty of Mechanical Engineering) ;
  • Arpaci, Alaeddin (Istanbul Technical University, Faculty of Mechanical Engineering)
  • Received : 2004.07.28
  • Accepted : 2005.10.24
  • Published : 2006.01.30

Abstract

Exact analytical solutions for in-plane static problems of planar curved beams with variable curvatures and variable cross-sections are derived by using the initial value method. The governing equations include the axial extension and shear deformation effects. The fundamental matrix required by the initial value method is obtained analytically. Then, the displacements, slopes and stress resultants are found analytically along the beam axis by using the fundamental matrix. The results are given in analytical forms. In order to show the advantages of the method, some examples are solved and the results are compared with the existing results in the literature. One of the advantages of the proposed method is that the high degree of statically indeterminacy adds no extra difficulty to the solution. For some examples, the deformed shape along the beam axis is determined and plotted and also the slope and stress resultants are given in tables.

Keywords

References

  1. Antman, S.S. (1972), 'The theory of rods', 641-703, in: C. TruesdeII (Ed.), Handbuch der Physik, Vol. VI a/2, Springer Verlag, Berlin
  2. Asplund, S.O. (1961), 'Deflection theory of arches', J. Struct. Div., ASCE, 87, ST7, 125-149
  3. Atluri, S.N., Iura, M. and Vasudevan, S. (2001), 'A consistent theory of finite stretches and finite rotations in space-curved beams of arbitrary cross-section', Comput. Mech., 27, 271-281 https://doi.org/10.1007/s004660100234
  4. Benlemlih, A. and E1 Ferrichia, M.E.A. (2002), 'A mixed finite element method for the arch problem', Appl. Math. Model., 26, 17-36 https://doi.org/10.1016/S0307-904X(01)00039-7
  5. Cinemre, V. (1982), 'Strain-displacement relations in rod theory', ITU Dergisi, 40, 1-6, (In Turkish)
  6. Dawe, D.J. (1974), 'Curved finite elements for the analysis of shallow and deep arches', Comput. Struct., 4, 559-580 https://doi.org/10.1016/0045-7949(74)90007-8
  7. Huddleston, J.V. (1968), 'Finite deflections and snap-through of high circular arches', J. Appl. Mech., 35(4), 763-769 https://doi.org/10.1115/1.3601302
  8. Kapania, R.K. and Li, J. (2003), 'A formulation and implementation of geometricalIy exact curved beam elements incorporating finite strains and finite rotations', Comput. Mech., 30, 444-459 https://doi.org/10.1007/s00466-003-0422-7
  9. Kim, J.G. and Kim, Y.Y. (1998), 'A new higher-order hybrid-mixed curved beam element', Int. J. Numer. Meth Eng., 43, 925-940 https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<925::AID-NME457>3.0.CO;2-M
  10. Lee, P-G and Sin, H-C. (1994), 'Locking-free curved beam element based on curvature', Int. J. Numer. Meth. Eng., 37, 989-1007 https://doi.org/10.1002/nme.1620370607
  11. Litewka, P. and Rakowski, J. (1998), 'The exact thick arch finite element', Comput. Struct., 68, 369-379 https://doi.org/10.1016/S0045-7949(98)00051-0
  12. Love, A.E.H. (1944), A Treatise on the Mathematical Theory of Elasticity, Dover Publication, New York
  13. Raveendranath, P., Singh, G. and Pradhan, B. (1999), 'Two-noded locking-free shear flexible curved beam element', Int. J. Numer. Meth. Engng., 44, 265-280 https://doi.org/10.1002/(SICI)1097-0207(19990120)44:2<265::AID-NME505>3.0.CO;2-K
  14. Ray, D. (2003), 'c-type method of unified CAMG and FEA. Part 1: Beam and arch mega-elements-3D linear and 2D non-linear', Int. J Numer. Meth. Engng., 58, 1297-1320 https://doi.org/10.1002/nme.816
  15. Reissner, E. (1972), 'On one-dimensional finite strain beam theory: The plane problem', J. Appl. Math. Phys. (ZAMP), 23, 795-804 https://doi.org/10.1007/BF01602645
  16. Reissner, E. (1973), 'On one-dimensional large displacement finite strain beam theory', Stud Appl. Math., 52, 87-95 https://doi.org/10.1002/sapm197352287
  17. Rubin, M.B. (2000), Cosserat Theories: Shells, Rods and Points, Kluwer Academic Publishers, The Netherlands
  18. Rubin, M.B. (2004), 'Buckling of elastic shallow arches using the theory of cosserat point', J Eng. Mech., 130(2), 216-224 https://doi.org/10.1061/(ASCE)0733-9399(2004)130:2(216)
  19. Schulz, M. and Filippou, F.C. (2001), 'Non-linear spatial Timoshenko beam element with curvature interpolation', Int. J Numer. Meth. Eng., 50, 761-785 https://doi.org/10.1002/1097-0207(20010210)50:4<761::AID-NME50>3.0.CO;2-2
  20. Stolarski, H. and Belytschko, T. (1983), 'Shear and membrane locking in curved $C^\circ$ elements', Comput. Meth. Appl. Mech. Eng., 41, 279-296 https://doi.org/10.1016/0045-7825(83)90010-5
  21. Tessler, A. and Spiridigliozzi, L. (1986), 'Curved beam elements with penalty relaxation', Int. J Numer. Meth. Eng., 23, 2245-2262 https://doi.org/10.1002/nme.1620231207
  22. Tufekci, E. and Arpaci, A. (1998), 'Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotatory inertia effects', J. Sound Vib., 209, 845-856 https://doi.org/10.1006/jsvi.1997.1290
  23. Tufekci, E. (2001), 'Exact solution of free in-plane vibration of shallow circular arches', Int. J Struct. Stab. Dynam., 1, 409-428 https://doi.org/10.1142/S0219455401000226

Cited by

  1. A new two-noded curved beam finite element formulation based on exact solution vol.33, pp.2, 2017, https://doi.org/10.1007/s00366-016-0470-1
  2. Exact solution for in-plane static problems of circular beams made of functionally graded materials vol.44, pp.4, 2016, https://doi.org/10.1080/15397734.2015.1121398
  3. Analytical formulation and solution of arches defined in global coordinates vol.60, 2014, https://doi.org/10.1016/j.engstruct.2013.12.004
  4. A unified formulation for static behavior of nonlocal curved beams vol.59, pp.3, 2016, https://doi.org/10.12989/sem.2016.59.3.475
  5. In-Plane Static Analysis of Nonlocal Curved Beams with Varying Curvature and Cross-Section vol.08, pp.01, 2016, https://doi.org/10.1142/S1758825116500101
  6. Analytical Stiffness Matrix for Curved Metal Wires vol.8, 2018, https://doi.org/10.1016/j.prostr.2017.12.007
  7. Out-of-plane dynamic stability analysis of curved beams subjected to uniformly distributed radial loading vol.46, pp.11, 2011, https://doi.org/10.1007/s10778-011-0426-5
  8. Strong and weak form solutions of curved beams via Carrera’s unified formulation pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1510066
  9. Response of circular tunnel with imperfect interface bonding in layered ground subjected to obliquely incident plane P or SV wave vol.42, pp.16, 2018, https://doi.org/10.1002/nag.2844
  10. A new finite element formulation for free vibrations of planar curved beams pp.1539-7742, 2018, https://doi.org/10.1080/15397734.2018.1456343
  11. Free vibration analysis of rotating tapered blades using Fourier-p superelement vol.27, pp.2, 2006, https://doi.org/10.12989/sem.2007.27.2.243
  12. Structural matrices of a curved-beam element vol.33, pp.3, 2009, https://doi.org/10.12989/sem.2009.33.3.307
  13. Closed-form solutions on bending of cantilever twisted Timoshenko beams under various bending loads vol.35, pp.2, 2006, https://doi.org/10.12989/sem.2010.35.2.261
  14. Locking-free curved elements with refined kinematics for the analysis of composite structures vol.337, pp.None, 2006, https://doi.org/10.1016/j.cma.2018.03.042
  15. Closed-form solutions for elastic tapered parabolic arches under uniform thermal gradients vol.55, pp.5, 2006, https://doi.org/10.1007/s11012-020-01153-x
  16. Application of Inverse Finite Element Method to Shape Sensing of Curved Beams vol.20, pp.24, 2006, https://doi.org/10.3390/s20247012