DOI QR코드

DOI QR Code

Numerical methods for the dynamic analysis of masonry structures

  • Degl'Innocenti, Silvia (Istituto di Scienza e Tecnologie dell'informazione "A. Faedo" ISTI-CNR Via G. Moruzzi) ;
  • Padovani, Cristina (Istituto di Scienza e Tecnologie dell'informazione "A. Faedo" ISTI-CNR Via G. Moruzzi) ;
  • Pasquinelli, Giuseppe (Istituto di Scienza e Tecnologie dell'informazione "A. Faedo" ISTI-CNR Via G. Moruzzi)
  • Received : 2005.02.25
  • Accepted : 2005.10.17
  • Published : 2006.01.10

Abstract

The paper deals with the numerical solution of the dynamic problem of masonry structures. Masonry is modelled as a non-linear elastic material with zero tensile strength and infinite compressive strength. Due to the non-linearity of the adopted constitutive equation, the equations of the motion must be integrated directly. In particular, we apply the Newmark or the Hilber-Hughes-Taylor methods implemented in code NOSA to perform the time integration of the system of ordinary differential equations obtained from discretising the structure into finite elements. Moreover, with the aim of evaluating the effectiveness of these two methods, some dynamic problems, whose explicit solutions are known, have been solved numerically. Comparisons between the exact solutions and the corresponding approximate solutions obtained via the Newmark and Hilber-Hughes-Taylor methods show that in the cases under consideration both numerical methods yield satisfactory results.

Keywords

References

  1. Anzellotti, G. (1985), 'A class of non-coercive functionals and masonry-like materials', Ann. Inst. Henri Poincare, 2, 261-307 https://doi.org/10.1016/S0294-1449(16)30398-5
  2. Bathe, J.K.J. and Wilson, W.E.L. (1976), Numerical Methods in Finite Element Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey
  3. Casarosa, C., Lucchesi, M., Padovani, C., Pagni, A. and Pasquinelli, G.(1997), 'Longitudinal vibrations of masonry beams', Proc. of the Fourth Int. Symposium on Computer Methods in Structural Masonry, 3-5 September 1997, Florence, Italy
  4. Chung, J. and Hulbert, G.M. (1993), 'A time integration algorithm for structural dynamics with improved numerical dissipation: the $generalized-{\alpha}$ method', J. Appl. Mech., 60, 371-375, June https://doi.org/10.1115/1.2900803
  5. Clarke, F.H. (1983), Optimization and Nonsmooth Analysis, John Wiley & Sons
  6. Clough, R.W. and Penzien, J. (1975), Dynamics of Structures, McGraw-Hill
  7. Como, M. and Grimaldi, A. (1985), 'A unilateral model for the limit analysis of masonry walls', In Unilateral Problems in Structural Analysis, G. Del Piero and E Maceri Eds., Springer
  8. Curnier, A., He, Qi-Chang and Zysset, P. (1995), 'Concwise linear elastic materials', J. of Elasticity, 37, 1-38 https://doi.org/10.1007/BF00043417
  9. Dafermos, C.M. (2000), Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag Bttrlin Heidelberg
  10. Del Piero, G. (1989), 'Constitutive equation and compatibility of the external loads for linear elastic masonrylike materials', Meccanica, 24, 150-162 https://doi.org/10.1007/BF01559418
  11. Di Pasquale, S. (1984a), 'Questioni concernenti la meccanica dei mezzi non reagenti a trazione', Atti VII Congresso Nazionale AIMETA, Trieste
  12. Di Pasquale, S. (1984b), 'Statica dei solidi murari: teoria ed esperienze', Internal Report, Dipartimento di Firenze
  13. Giaquinta, M. and Giusti, E. (1985), 'Researches on the equilibrium of masonry structures', Arch. Rational Mech. Analysis, 8, 359-392
  14. Gurtin, M.E. (1972), The Linear Theory of Elasticity, Encyclopedia of Physics VIa/2 Mechanics of Solids II 1-294
  15. Geradin, M. and Rixen, D. (1997), Mechanical Vibrations. Theory and Application to Structural Dynamics, 2nd edition John Wiley & Sons Ltd
  16. Heyman, J. (1966), 'The stone skeleton', Int. J. Solids Struct., 2, 249-279 https://doi.org/10.1016/0020-7683(66)90018-7
  17. Heyman, J. (1982), The Masonry Arch, J. Wiley & Sons
  18. Hilber, H.M., Hughes, T.J.R. and Taylor, L.R. (1977), 'Improved numerical dissipation for time integration algorithms in structural dynamics', Earthq. Eng. Struct Dyn., 5, 283-292 https://doi.org/10.1002/eqe.4290050306
  19. Hulbert, G.M. and Jang, I. (1995), 'Automatic time step control algorithms for structural dynamics', Comput. Meth. Appl. Mech. Eng., 126, 155-178 https://doi.org/10.1016/0045-7825(95)00791-X
  20. Lax, P.D. (1972), Hyperbolic Systems of Conservations Laws and the Mathematical Theory of Shock Waves, Society for Industrial and Applied Mathematics, Philadelphia
  21. Lucchesi, M. (2000), Private communication. Lucchesi, M., Padovani, C. and Pagni, A. (1994), 'A numerical method for solving equilibrium problems of masonry-like solids', Meccanica, 24, 175-193
  22. Lucchesi, M., Padovani, C. and Pagni, A. (1994), 'A numerical method for solving equilibrium problems of masonry-like solids', Meccanica, 24, 175-193
  23. Lucchesi, M., Padovani, C. and Pasquinelli, G. (1995), 'On the numerical solution of equilibrium problems for elastic solids with bounded tensile strength', Comput. Methods Appl. Mech. Engrg., 127, 37-56 https://doi.org/10.1016/0045-7825(95)00816-4
  24. Lucchesi, M., Padovani, C. and Zani, N. (1996), 'Masonry-like materials with bounded compressive strength', Int. J Solids Struct., 33, 1961-1994 https://doi.org/10.1016/0020-7683(95)00143-3
  25. Lucchesi, M., Padovani, C., Pagni, A. and Pasquinelli, G. (1999a), 'The entropy condition and Lax's E-condition for longitudian1 oscillations of bimodu1ar rods', Proc. of PACAM VI. Sixth Pan-Americam Congress of Applied Mechanics and VIII Int. Conf. on Dynamic Problems in Mechanics, Rio de Janeiro, 4-8 January, 1389-1392
  26. Lucchesi, M., Padovani, C., Pagni, A., Pasquinelli, a and Zani N. (1999b), 'Sulla propagazione delle onde longitudinali in travi non resistenti a trazione', Atti del XlV Congresso dell'Associazione Italiana di Meccanica Teorica e Applicata, Como 6-9 October
  27. Lucchesi, M., Padovani, C., Pagni, A., Pasquinelli, a and Zani, N. (2000), 'COMES-NOSAA finite element code for non-linear structural analysis', Report CNUCE-B4-2000-003
  28. Padovani, C. (2000), 'On a class of non-linear elastic materials', Int. J. Solids Struct., 37, 7787-7807 https://doi.org/10.1016/S0020-7683(99)00307-8
  29. Panzeca, T. and Polizzotto, C. (1988), 'Constitutive equations for no-tension materials', Meccanica, 23, 88-93 https://doi.org/10.1007/BF01556706
  30. Romano, G. and Romano, M. (1979), 'Sulla soluzione di rpoblemi strutturali in presenza di legani costitutivi unilaterali', Rend. Ace. Naz. Lincei, Classe di Scienze Fisiche Matematiche e Naturali, Serie VIII, LXVII
  31. Romano, G. and Sacco, E. (1984), 'SuI calcolo di strutture non reagenti a trazione', Atti Vll Congresso Nazionale AlMETA, Trieste
  32. Silhary, M. (1997), Private Communication
  33. Silhary, M. (1997), The Mechanics and Thermodynamics ofContinuous Media. Springer Verlag, Berlin

Cited by

  1. On the derivative of the stress–strain relation in a no-tension material vol.22, pp.7, 2017, https://doi.org/10.1177/1081286515571786
  2. The NOSA-ITACA code for the safety assessment of ancient constructions: A case study in Livorno vol.89, 2015, https://doi.org/10.1016/j.advengsoft.2015.04.002
  3. Processes in Masonry Bodies and the Dynamical Significance of Collapse vol.13, pp.7, 2008, https://doi.org/10.1177/1081286507078307
  4. FREE LONGITUDINAL VIBRATIONS OF BIMODULAR BEAMS: A COMPARATIVE STUDY vol.11, pp.01, 2011, https://doi.org/10.1142/S0219455411003975
  5. Propagation of waves in masonry-like solids vol.11, pp.5, 2016, https://doi.org/10.2140/jomms.2016.11.505