The Tarnish Process of Silver in H2S Environments

  • Kim, H. (School of Materials Science and Engineering Hongik University) ;
  • Payer, J.H. (Department Materials Science and Engineering Case Western Reserve University)
  • Published : 2006.12.01

Abstract

The effects of sub-ppm levels of $H_2S$ and the adsorbed water on the atmospheric corrosion of silver were studied with In situ weight balance to study the effect of the adsorbed water on the kinetic behavior and to determine the rate-controlling step, with XPS to analyze the tarnish film, and with calculation of phase equilibrium to predict the stable solid phase, the concentrations of dissolved species ($Ag^-$, $H^+$, $S^{2-}$, $HS^-$) and the equilibrium potentials ($E_{Ag^+/Ag}$, $E_{H^+/H_2}$, $E_{O_2/O^{2-}$). The results of weight measurements showed that oxygen was required for the sulfidation of silver in 100 ppb $H_2S$ and humidified environments enhanced the tarnished rate and oxidizing power. In addition, the rate determining step for tarnishing silver was shown to be changed to transport though the tarnish film.

Keywords

References

  1. J. Guinement and C. Fiaud, 13th Inter. Conf. on Electric Contacts, p. 383, Lausanne (1986)
  2. D. Simon, C. Perrin, D. Mollimard, M. T. Bajard, and J. Bardolle, 13th Inter. Conf. on Electric Contacts, p. 333, Lausanne (1986)
  3. T. Kuhn and G. H. Kelsall, Corrosion of Electrical Contacts, p. 51, Institute of Metals, Great Britain (! 989).
  4. W. H. Abbott, Proc. 4th Int. Res. Symp. Electrical Contact Phemonena, p. 35, Swansea (1968)
  5. T. E. Graedel, J. P. Franey, G. J. Gualtieri, G. W. Kammlott and D. L. Malm, Corr. Sci., 25, 1163 (1985) https://doi.org/10.1016/0010-938X(85)90060-5
  6. 29L. Volpe and P. J. Peterson, Corr. Sci, 29, 1179 (1989) https://doi.org/10.1016/0010-938X(89)90065-6
  7. P. B. P. Phipps and D. W. Rice, Corrosion Chemistry, p. 235, G. R. Brubaker and P.B.P. Phipps(Eds.), Washington (1979)
  8. H. Kim, Ph. D. Thesis, Case Western Reserve University, Cleveland, OH (1996)
  9. D. W. Rice, E. B. Rigby, P.B.P. Phipps, R. J. Cappell and R. Tremoureux, J. Electrochem. Soc., 128, 275 (1989). https://doi.org/10.1149/1.2127403
  10. D. A. Buttery, Eiectroanalytical Chemistry vol. 17, A. J. Bard, (Ed.)p. l, Marcel Dekker Inc., New York (1989)
  11. S. Bruckenstein and S. Swathirajann, Elecrochemica Acta, 30, 851 (1985) https://doi.org/10.1016/0013-4686(85)80140-7
  12. M. P. Seah and W. A. Debch,Surf. and Interface Anal., 1, 2 (1979) https://doi.org/10.1002/sia.740010103
  13. J. C. Angus, B. Lu, and M. J. Zappia, J Appl. Electrochem., 17, 1 (1987) https://doi.org/10.1007/BF01009127
  14. J. C. Angus and M. J. Zappia, J Electrochem. Soc., 134, 1374 (1987) https://doi.org/10.1149/1.2100675
  15. J-E Svensson and L-G Johansson, J Electrochem. Sci., 143, 51 (1996) https://doi.org/10.1149/1.1836386
  16. H. Kim, Materials and Corrosion, 54, 243 (2003) https://doi.org/10.1002/maco.200390053
  17. T. Nomura, T. Nagamunne, K. Izutsu, and T. S. West, Bunseki KagaKu, 30, 494 (1981) https://doi.org/10.2116/bunsekikagaku.30.8_494
  18. Yu. G. Vlasov and Yu. E. Ermolenko, Elektrokhemiya, 17 1301 (1981)
  19. D. Grientsching and W. Sitte, J. Phys. Chem. Solids. 52, 805 (1991) https://doi.org/10.1016/0022-3697(91)90079-F
  20. R. L. Allen and W. J. Moore., J. Chem. Phys., 63, 223 (1985)
  21. D. B. Oakes, J. Appl. Phys .., 77, 2166 (1995) https://doi.org/10.1063/1.358794