Electrochemical Properties of $LiNi_{1-y}In_yO_2$ Synthesized by Milling and Solid-/state Reaction Method

기계적 혼합과 고상법에 의해 합성한 $LiNi_{1-y}In_yO_2$ 전기화학적 특성

  • Kim, Hun-Uk (Division of Advanced Materials Engineering, Automobile Hi-Technology Research Center, Engineering Research Institute, Chonbuk National University) ;
  • Youn, Sun-Do (Division of Applied Chemical Engineering, Chonnam National University) ;
  • Lee, Jae-Cheon (Division of Applied Chemical Engineering, Chonnam National University) ;
  • Park, Hye-Ryoung (Division of Applied Chemical Engineering, Chonnam National University) ;
  • Park, Chan-Gi (Division of Advanced Materials Engineering, Automobile Hi-Technology Research Center, Engineering Research Institute, Chonbuk National University) ;
  • Song, Myoung-Youp (Division of Advanced Materials Engineering, Automobile Hi-Technology Research Center, Engineering Research Institute, Chonbuk National University)
  • 김훈욱 (전북대학교 신소재공학부 부설 공학연구원자동차신기술연구센터) ;
  • 윤순도 (전남대학교 응용화학부) ;
  • 이재천 (전남대학교 응용화학부) ;
  • 박혜령 (전남대학교 응용화학부) ;
  • 박찬기 (전북대학교 신소재공학부 부설 공학연구원자동차신기술연구센터) ;
  • 송명엽 (전북대학교 신소재공학부 부설 공학연구원자동차신기술연구센터)
  • Published : 2006.03.15

Abstract

By calcining at $750^{\circ}C$ for 30 h in $O_2$ stream after milling, $LiNi_{1-y}In_yO_2$(y = 0.005, 0.01, 0.025, 0.05, and 0.1) were synthesized and their electrochemical properties were investigated. All the samples had the $R{\bar{3}}m$ structure. In addition, they contained $LiInO_2$ phase and the intensities of the peaks for the $LiInO_2$ phase increased as the value of y increased. The sample with y = 0.01 had the largest first discharge capacity (140.2 mAh/g), but the sample with y = 0.005 had a better cycling performance. The samples with y $\geq$ 0.025 had a bad cycling performance irrespective of the first discharge capacity. The sample with y = 0.005 had the largest value of $I_{003}/I_{104}$ and the smallest value of R-factor. Among all the samples, $LiNi0_{0.995}In_{0.005}O_2$ had the best electrochemical properties. This sample had a smaller first discharge capacity than $LiNiO_2$, but it showed a better cycling performance than $LiNiO_2$.

Keywords

References

  1. K. Ozawa, 'Lithium-Ion Rechargeable Batteries with $LiCoO_2$ and Carbon Electrodes: the $LiCoO_2$/C System,' Solid State Ion., vol. 69, No. 3-4, 1994, pp. 212-221 https://doi.org/10.1016/0167-2738(94)90411-1
  2. Z. S. Peng, C. R. Wan and C. Y. Jiang, 'Synthesis by Sol-Gel Process and Characterization of $LiCoO_2$ Cathode Materials' , J. Power Sources, vol. 72, No. 2, 1998, pp. 215-220 https://doi.org/10.1016/S0378-7753(97)02689-X
  3. J. R. Dahn, U. von Sacken and C. A. Michal, 'Structure and Electrochemistry of $Li_1$ $\pm$ $yNiO_2$ and a New $Li_2NiO_2$ Phase with the $Ni(OH)_2$ Structure,' Solid State Ion., vol. 44, No. 1-2, 1990, pp. 87-97 https://doi.org/10.1016/0167-2738(90)90049-W
  4. M. Y. Song, H. Rim, E. Y. Bang, S. G. Kang and S. H. Chang, 'Synthesis of Cathode Materials $LiNi_1-yCoyO_2$ from Various Starting Materials and their Electrochemical Properties' , J. Kor. Ceram. Soc., vol. 40, No. 6, 2003, pp. 507-12 https://doi.org/10.4191/KCERS.2003.40.6.507
  5. M. Y. Song, I. H. Kwon and M. S. Shon, 'Electrochemical Properties of $LiNiyMn_2-yO_4$ Prepared by the Solid-State Reaction', J. Kor. Ceram. Soc., vol. 40, No. 5, 2003, pp. 401-4 https://doi.org/10.4191/KCERS.2003.40.5.401
  6. M. Y. Song and D. S. Ahn, 'Improvement in the Cycling Performance of $LiMn_2O_4$ QY the Substitution of Fe for Mn', Solid State Ion., vol. 112, No. 3-4, 1998, pp. 245-248 https://doi.org/10.1016/S0167-2738(98)00233-1
  7. C. C. Chang and P. N. Kumta, 'Particulate Sol-Gel Synthesis and Electrochemical Characterization of $LiMO_2$ (M = Ni, $Ni_{0.75}$ $Co_{0.25}$) Powders', J. Power Sources, vol. 75, NO. 2, 1998, pp. 44-55 https://doi.org/10.1016/S0378-7753(98)00091-3
  8. R. V. Moshtev, P. Zlatilova, V. Manev and A. Sato, 'The $LiNiO_2$ Solid Solution as a Cathode Material for Rechargeable Lithium Batteries,' J. Power Sources, vol. 54, No. 3-4, 1995, pp. 329-33 https://doi.org/10.1016/0378-7753(94)02094-J
  9. W. Li, J. N. Reimers and J. R. Dahn, 'In Situ X-ray Diffraction and Electrochemical Studies of $Li_1-xNiO_2$', Solid State Ion., vol. 67, No. 1-2, 1993, pp. 123-30 https://doi.org/10.1016/0167-2738(93)90317-V
  10. T. Ohzuku and A. Veda, 'Why Transition Metal (di) Oxides are the Most Attractive Materials for Batteries', Solid State Ion., vol. 69, No. 3-4, 1994, pp. 201-211 https://doi.org/10.1016/0167-2738(94)90410-3
  11. Y. Gao, M. V. Yakov1eva and W. B. Ebner, 'Novel $LiNi_1-xTix$/2Mgx/$2O_2$ Compounds as Cathode Materials for Safer Lithium-Ion Batteries,' Electrochem. Solid State Lett., vol. 1, No. 3, 1998, pp. 117-119 https://doi.org/10.1149/1.1390656
  12. J. Kim and K. Amine, 'A Comparative Study on the Substitution of Divalent, Trivalent and Tetravalent Metal Ions in $LiNi_1-xMxO_2$ (M = $Cu^{2+}$, $Al^{3+}$ and $Ti^{4+}$,' J. Power Sources, vol. 104, No. 1, 2002, pp.33-39 https://doi.org/10.1016/S0378-7753(01)00900-4
  13. H. U. Kim, S. D. Youn, J. C. Lee, H. R. Park and M. Y. Song, 'Study on the Sunthesis by Milling and Solid-State Reaction Method and Electrochemical Properties of $LiNiO_2$,' J. Kor. Ceram. Soc., (submitted)
  14. T. Ohzuku, A. Veda, M. Nagayarna, 'Electrochemistry and Structural Chemistry of $LiNiO_2$ for 4Volt Secondary Lithium Cells' J. Electrochem. Soc., vol. 140, No. 7, 1993, pp. 1862-1870 https://doi.org/10.1149/1.2220730
  15. M. Guilmard, A. Rougier, M. Grone, L. Croguennec, C. Delmas, 'Effects of Aluminum on the Structural and Electrochemical Properties of $LiNiO_2$,' J. Power Sources, vol. 115, No. 2, 2003, pp. 305-314 https://doi.org/10.1016/S0378-7753(03)00012-0
  16. H. U. Kim, S. D. Youn, H. R. Park, M. Y. Song, 'Electrochemical Properties of $LiNi_1-yMyO_2$ (M = $Zn^{2+}$, $Al^{3+}$ and $Ti^{4+}$ Synthesized by Milling and Solide-State Reaction Method' J. Kor. Ceram. Soc, vol. 42, No. 5, 2005, pp. 352-358 https://doi.org/10.4191/KCERS.2005.42.5.352
  17. C. Julien, S. S. Michael, S. Ziolkiewicz, 'Structural and Electrochemical Properties of $LiNi_{0.3}Co_{0.7}O_2$ Synthesized by Different LowTemperature Techniques' Int. J. Inorg. Matt., vol. 1, NO. 1, 1999, pp. 29-37 https://doi.org/10.1016/S1463-0176(99)00005-8
  18. H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, J. Yamaki, 'Characterzation and Cathode Performance of $Li_{1-x}Ni_{1+x}O_2$ Prepared with the Excess Lithium Method' Solid State Ion., vol. 80, No. 3-4, 1995, pp. 261-269 https://doi.org/10.1016/0167-2738(95)00144-U