진공 슬러리 담금 코팅 공정에 의한 고체 산화물 연료전지용 박막 전해질막 제조에 관한 연구

Fabrication Of Thin Electrolyte Layer For Solid Oxide Fuel Cell by Vacuum Slurry Dip-coating Process

  • 손희정 (한국에너지기술연구원 신연료전지연구센터) ;
  • 임탁형 (한국에너지기술연구원 신연료전지연구센터) ;
  • 이승복 (한국에너지기술연구원 신연료전지연구센터) ;
  • 신동열 (한국에너지기술연구원 신연료전지연구센터) ;
  • 송락현 (한국에너지기술연구원 신연료전지연구센터) ;
  • 김성현 (고려대학교 화공생명공학과)
  • Son, Hui-Jeong (Advanced Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Lim, Tak-Hyoung (Advanced Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Lee, Seung-Bok (Advanced Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Shin, Dong-Tyul (Advanced Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Song, Rak-Hyun (Advanced Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Kim, Sung-Hyun (Department of Chemical and Biological Engineering, Korea University)
  • 발행 : 2006.06.15

초록

The electrolyte in the solid oxide fuel cell must be dense enough to avoid gas leakage and thin enough to reduce the ohmic resistance. In order to manufacture the thin and dense electrolyte layer, 8 mol% $Y_2O_3$ stabilized-$ZrO_2$ (8YSZ) electrolyte layers were coated on the porous tubular substrate by the novel vacuum slurry dip-coating process. The effects of the slurry concentration, presintering temperature, and vacuum pressure on the thickness and the gas permeability of the coated electrolyte layers have been examined in the vacuum slurry coating process. The vacuum-coated electrolyte layers showed very low gas permeabilities and had thin thicknesses. The single cell with the vacuum-coated electrolyte layer indicated a good performance of $495\;mW/cm^2$, 0.7 V at $700^{\circ}C$. The experimental results show that the vacuum dip-coating process is an effective method to fabricate dense thin film on the porous tubular substrate.

키워드

참고문헌

  1. N. Q. Minh and T. Takahashi, 'Science and Technology of Ceramic Fuel Cells', Elsevier Science, Amsterdam, The Nertherlands, 1995, p. 69
  2. J. P. P. Huijsmans, F. P. F. van Berkel, G. M Christie, 'Intermediste temperature SOFC-a promise for the 21st century', Journal of Power Sources, Vol. 71, 1998, p. 107 https://doi.org/10.1016/S0378-7753(97)02789-4
  3. P. Charpentier, P. Fragnaud, D. M ScWeich, and E. Gehain, 'Preparation of thin film SOFCs working at reduced temperature', Solid State lonics, Vol. 135, No. 1/4, 2000, p. 373 https://doi.org/10.1016/S0167-2738(00)00472-0
  4. N. P. Brandon, S. Skinner, and B. C. H. Steels, 'Recent Advances in Materials for Fuel Cells', Annu. Rev. Mater. Res., Vol. 33, 2003, p. 183 https://doi.org/10.1146/annurev.matsci.33.022802.094122
  5. Edith Schuller, Robert Vaben, and Detlev stover, 'Thin Electrolyte Layers for SOFC via Wet Powder Spraying(wpS)', Advanced engineering materials, Vol. 4, No. 9, 2002, p. 659 https://doi.org/10.1002/1527-2648(20020916)4:9<659::AID-ADEM659>3.0.CO;2-I
  6. 손희정, 이혜종, 엄탁형, 송락현, 백동현, 신 동열, 현상훈, John Kilner, '졸-겔법을 이용 한 고체산화물연료전지의 전해질 박막 제조 및 가스 투과도', Vol. 42, No. 12, 2005, p. 827
  7. R .R. Peng, C. R. Xia, X. Q. Liu, D. K. Peng, G. G. Meng, 'Intermediate temperature SOFCs with thin CeO.8Y0.2O1.9 film prepared by screen-printing', Solid State lonics, Vol. 152-153, 2002, p. 583 https://doi.org/10.1016/S0167-2738(02)00391-0
  8. J. Will, A. Mitterdorfer, C. Kleilogel, D. Perednis, L. J. Gauckler, 'Fabrication of thin electrolytes for second-generation solid oxide fuel cells', Vol. 131, 2000, p. 79 https://doi.org/10.1016/S0167-2738(00)00624-X
  9. G. schiller, R. H. Henne, M. Lang, R. Ruckdaschel, S. Schaper, 'Development of vacuum plasma sprayed thin film SOFC for reducced operating temperature', Fuel cells Bull. No. 21
  10. J. H. Kim, R. H. Song, K. S. Song, S. H. Hyun, D. R. Shin, H. Yokokawa, 'Fabrication and Characteristics of Anode-supported Flat Tubular Solid Oxide Fuel Cell', Journal of Power Sources, Vol. 122, No. 2, 2003, p. 138 https://doi.org/10.1016/S0378-7753(03)00431-2
  11. R. H. Song, 'Preparation and Characteristics of High Performance Cathode for Anode-SupportedSolid Oxide Fuel Cell', Journal of the Korean Electrochemical Society, Vol. 8, No. 2, 2005, p. 88 https://doi.org/10.5229/JKES.2005.8.2.088