Modulation of Subcellular Ca2+ Signal by Fluid Pressure in Rat Atrial Myocytes

  • Woo Sun-Hee (College of Pharmacy, Chungnam National University) ;
  • Morad Martin (Department of Pharmacology, Georgetown University Medical Center)
  • Published : 2006.03.01

Abstract

Atrial chambers serve as mechanosensory systems during the haemodynamic or mechanical disturbances, which initiates arrhythmia. Atrial myocytes, lacking t-tubules, have two functionally separate sarcoplasmic reticulums (SRs): those at the periphery close to the surface membrane, and those at the cell interior (center) not associated with the membrane. To explore possible role of fluid pressure (FP) in the regulation of atrial local $Ca^{2+}$ signaling we investigated the effect of FP on subcellular $Ca^{2+}$ signals in isolated rat atrial myocytes using confocal microscopy. FP was applied to whole area of single myocyte with pressurized automatic micro-jet (200-400 $mmH_2O$) positioned close to the cell. Application of FP enhanced spontaneous occurrences of peripheral and central $Ca^{2+}$ sparks with larger effects on the peripheral release sites. Unitary properties of single sparks were not altered by FP. Exposure to higher FP often triggered longitudinal $Ca^{2+}$ wave. These results suggest that fluid pressure may directly alter excitability of atrial myocytes by activating $Ca^{2+}$-dependent ionic conductance in the peripheral membrane and by enhancing spontaneous activation of central myofilaments.

Keywords

References

  1. Berlin, J. R. (1995). Spatiotemporal changes of $Ca^{2+}$ during electrically evoked contractions in atrial and ventricular cells. Am. J. Physiol. 267, H1165-H1170
  2. Beuckelmann, D. J., and Wier, W. G. (1988). Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cell. J. Physiol. 405, 233-255
  3. Bode, F., Sachs, F. and Franz, M. R. (2001). Tarantula peptide inhibits atrial fibrillation. Nature 409, 14-15
  4. Carl, L. S., Felix, K., Caswell, A. H., Brandt, N. R., Ball, W. J., Vaghy, P. L., Meissner, G. and Ferguson, D.G. (1995). Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular tridin and ryanodine receptor in rabbit ventricle and atrium. J. Cell. BioI. 129, 673-682 https://doi.org/10.1083/jcb.129.3.673
  5. Cleemann, L. and Morad, M. (1991). Role of $Ca^{2+}$ channel in cardiac excitation-contraction coupling in the rat: evidence from $Ca^{2+}$ transients and contraction. J. Physiol. 432, 283-312 https://doi.org/10.1113/jphysiol.1991.sp018385
  6. Cleemann, L., Wang, W. and Morad, M. (1998). Two-dimensional confocal images of organization, density, and gating of focal $Ca^{2+}$ release sites in rat cardiac myocytes. Proc. Natz. Acad. Sci. U. S. A. 95, 10984-10989
  7. Copper, G., Kent, R. L., Uboh, C. E., Thompson, E. W. and Marino, T. A. (1985). Hemodynamic versus adrenergic control of cat right ventricular hypertrophy. J. Clin. Invest. 75, 1403-1414 https://doi.org/10.1172/JCI111842
  8. Forssmann, W. G. and Girardier, L. (1970). A study of the T system in rat heart. J. Cell. BioI. 44, 1-19 https://doi.org/10.1083/jcb.44.1.1
  9. Huser, J., Lipsius, S. L. and Blatter, L. A. (1996). Calcium gradients during excitation-contraction coupling in cat atrial myocytes. J. Physiol. 494, 641-651 https://doi.org/10.1113/jphysiol.1996.sp021521
  10. HUser, J., Blatter, L. A. and Lipsius, S. L. (2000). Intracellular $Ca^{2+}$ release contributes to automaticity in cat atrial pacemaker cells. J. Physiol. 524, 415-422 https://doi.org/10.1111/j.1469-7793.2000.00415.x
  11. Kirk, M. M., Izu, L. T., Chen-Izu, Y., McCulle, S. L., Wier, W. G., Balke, C. W. and Shorofsky, S. R. (2003). Role of the transverse- axial tubule system in generating calcium sparks and calcium transients in rat atrial myocytes. J. Physiol. 547, 441-451 https://doi.org/10.1113/jphysiol.2002.034355
  12. Kockskamper, J., Sheehan, K. A., Bare, D. J., Lipsius, S. L., Mignery, G. A. and Blatter, L. A. (2001). Activation and propagation of $Ca^{2+}$ release during excitation-contraction coupling in atrial myocytes. Biophys. J. 81, 2590-2605 https://doi.org/10.1016/S0006-3495(01)75903-6
  13. Kohl, P., Hunter, P and Noble, D. (1999). Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Prog. Biophys. Mol. BioI. 71, 91-138 https://doi.org/10.1016/S0079-6107(98)00038-8
  14. Komuro, I., Kaida, T., Shibazaki, Y., Kurabayashi, M., Katoh, Y., Hoh, E., Takaku, F. and Yazaki, Y. (1990). Stretching cardiac myocytes stimulates protooncogene expression. J. BioI. Chem. 265, 3595-3598
  15. Lakatta, E. G. (1993). Cardiovascular regulatory mechanisms in advanced age. Physiol. Rev. 73, 413-467 https://doi.org/10.1152/physrev.1993.73.2.413
  16. Lipsius, S. L., Huser, J. and Blatter, L. A. (2001). Intracellular $Ca^{2+}$ release sparks atrial pacemaker activity. News Physiol. Sci. 16, 101-106
  17. Mackenzie, L., Bootman, M. D., Berridge, M. J. and Lipp, P. (2001). Predetermined recruitment of calcium release sites underlies excitation-contraction coupling in rat atrial myocytes. J. Physiol. 530, 417-429 https://doi.org/10.1111/j.1469-7793.2001.0417k.x
  18. Mackenzie, L., Bootman, M. D., Laine, M., Berridge, M. J., Thuring, J., Holmes, A., Li, W. H. and Lipp, P. (2002). The role of inositol 1,4,5-trisphosphate receptors in $Ca^{2+}$ signaling and the generation of arrhythmias in rat atrial myocytes. J. Physiol. 541, 395-409 https://doi.org/10.1113/jphysiol.2001.013411
  19. Morad, M., Javaheri, A, Risius, T. and Belmonte, S. (2005). Multimodality of $Ca^{2+}$ signaling in rat atrial myocytes. Ann. N. Y. Acad. Sci. 1047, 112-121 https://doi.org/10.1196/annals.1341.010
  20. Nabauer, M., Callewaert, G., Cleemann, L. and Morad, M. (1989). Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244, 800-803 https://doi.org/10.1126/science.2543067
  21. Nazir, S. A. and Lab, M. J. (1996). Mechanoelectric feedback and atrial arrhythmias. Cardiovasc. Res. 31, 52-61 https://doi.org/10.1016/S0008-6363(95)00158-1
  22. Niggli, E. and Lederer, W. J. (1990). Voltage-independent calcium release in heart muscle. Science 250, 565-568 https://doi.org/10.1126/science.2173135
  23. Shinozaki, T., Ishide, N., Miura, M. and Takishima, T. (1993). The source of epifluorescence in isolated perfused heart loaded with fura 2-AM or Indo-1 AM. Heart Vessels 8, 79-84 https://doi.org/10.1007/BF01744387
  24. Sommer, J. R. and Jennings, R. B. (1992). Ultrastructure of cardiac muscle. In The Heart and Cardiovascular System (Fozzard HA, Harbor E, Jennings RB, Katz AM, Morgan HE, Ed.), pp. 3-50. Ravan Press, New York, NY
  25. Tavi, P., Han, C. and Weckstrom, M. (1998). Mechanisms of stretch-induced changes in [$Ca^{2+}$] in rat atrial myocytes. Role of increased troponin C affinity and stretch-activated ion channels. Circ. Res. 83, 1165-1177 https://doi.org/10.1161/01.RES.83.11.1165
  26. Vila Petroff, M. G., Kim, S. H., Pepe, S., Dessy, C., Marban, E., Balligand, J. L. and Sollott, S. J. (2001). Endogenous nitric oxide mechanisms mediate the stretch dependence of $Ca^{2+}$ release in cardiomyocytes. Nature Cell Biol. 3, 867-873 https://doi.org/10.1038/ncb1001-867
  27. Woo, S. H., Cleemann, L. and Morad, M. (2002). $Ca^{2+}$ currentgated focal and local $Ca^{2+}$ release in rat atrial myocytes: evidence from rapid 2-D confocal imaging. J. Physiol. 543, 439-453 https://doi.org/10.1113/jphysiol.2002.024190
  28. Woo, S. H., Cleemann, L. and Morad, M. (2003). Spatiotemporal characteristics of junctional and nonjunctional focal $Ca^{2+}$ release in rat atrial myocytes. Circ. Res. 92, e1-e11 https://doi.org/10.1161/01.RES.0000051887.97625.07
  29. Woo, S. H., Cleemann, L. and Morad, M. (2005). Diversity of atrial local $Ca^{2+}$ signaling: evidence from 2-D confocal imaging in $Ca^{2+}$ buffered rat atrial myocytes. J. Physiol. 567, 905-921 https://doi.org/10.1113/jphysiol.2005.092270