중소도시, 대도시 및 산업지역에서 채취한 미세분진 ($PM_{2.5}$)과 입자상 다환방향족탄화수소의 계절적인 분포 특성

Characteristics of Seasonal Distributions of Fine Particles ($PM_{2.5}$) and Particle-Associated Polycyclic Aromatic Hydrocarbons in Urban, Metropolitan and Industrial Complex Sites

  • Kim He-Kap (Department of Environmental Science, Kangwon National University) ;
  • Jung Kyung-Mi (National Institute of Environmental Research) ;
  • Kim Tae-Sik (Department of Health and Environment, Hallym College)
  • 발행 : 2006.03.01

초록

This study was conducted to investigate seasonal distributions of fine particles ($PM_{2.5}$) and associated polycyclic aromatic hydrocarbons (PAHs) at three cities. $PM_{2.5}$ samples were collected on glass fiber filters at urban (Chuncheon), metropolitan (Seoul), and industrial complex sites (Ulsan) from September, 2002 to February, 2004 using the Andersen FH 95 Particulate Sampler. About five 24-hour samples were collected from each site per season. The filters were analyzed for mass and six selected PAHs concentrations. $PM_{2.5}$ concentrations were the highest either in winter or spring, which could be attributed to the increase of fossil fuel combustion in winter or the transport of yellow sand to the Korean peninsula from China in spring, respectively. Regional $PM_{2.5}$ concentrations were higher in the order of Seoul>Chuncheon>Ulsan without statistical difference among cities. The filters were extracted using dichloromethane in an ultrasonicator and analyzed for six PAHs (anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, and benzo[a]pyrene) with HPLC. Total PAHs concentrations were statistically different among seasons in each site, and the highest concentrations were observed in winter at each sampling site. For total samples collected, the median total PAHs concentrations in Chuncheon ($4.6ng/m^3$) and Seoul ($4.4ng/m^3$) were approximately two times higher than that in Ulsan ($2.1ng/m^3$). Chrysene was a component found in the highest proportion among total PAHs at each site. Carcinogenic risks calculated based on the BaP toxic equivalency factors (TEFs) over the whole sampling period were higher in the order of Chuncheon>Seoul>Ulsan. This study suggests that the atmosphere of Chuncheon is contaminated with particulate matter and PAHs at the levels equivalent to those of Seoul and that an appropriate measure needs to be taken to mitigate human health risks from inhalation exposure to airborne fine particles.

키워드

참고문헌

  1. 김민영, 조석주, 김광래, 이민환. 황사기간 중 $PM_{2.5},\;PM_{10}$, TSP 농도 특성에 관한 연구, J. Kor Earth Sci Soc 2003; 24: 315-324
  2. 김창환, 전보경, 최금찬. 도시지역의 $PM_{10}과\;PM_{2.5}의$ 의 계절 농도 및 특성에 관한 연구, 동아대학교 환경문제연구소 연구보고 1999; 22: 29-37
  3. 김희갑, 정경미, 김동진, 이종태. 춘천에서 2002년 봄철 황사 발생기간 동안에 채취된 미세분진 중 무기성분의 특성, 한국환경독성학회지 2002; 17: 333-339
  4. 박성은, 정용. 서울시 대기부유분진의 농도와 다환방향족 유기물질에 의한 발암위해성, 한국대기보전학회지 1992; 8: 247-256
  5. 박은정, 강미선, 유대은, 김대선, 유승도, 정규혁, 박광식. 서울북부 지역 미세먼지에 함유된 유해 중금속의 분석 및 건강위해성평가, 한국환경독성학회지 2005; 20: 179-186
  6. 백성옥, 최진수. 환경대기중 다환방향족탄화수소의 출현양상과 거동(I)-지역적 및 계절적 농도 분포, 대한환경공학회지 1996; 18: 465-480
  7. 백성옥, 최진수. 대기 중 다환방향족탄화수소의 기체-입자상 농도분포에 미치는 주변 온도의 영향, 한국대기보전학회지 1998; 14: 117-131
  8. 신은상, 김희강. 서울시에서 대기부유먼지에 대한 황사의 영향, 한국대기보전학회지 1992; 8: 52-57
  9. 이종태, 이성임, 신동천, 정용. 울산시의 대기 중 분진과 일별 사망에 대한 연구, 예방의학회지 1998; 31: 82-90
  10. 임종한, 이종태, 김동기, 신동천, 노재훈. 서울지역 대기오염이 호흡기계질환 수진 건수에 미치는 단기영향에 관한 연구, 대한산업의학회지 1998; 10: 333-342
  11. 전준민, 김성우, 김윤신. 여천공단내 실내.외 미세분진 중의 화학원소 농도 및 발생원 추정에 관한 연구, 대한환경공학회지 2001; 23: 305-317
  12. 정 용, 박성은, 황만식, 홍지연. 대기 중 다환방향족 탄화수소류의 오염도 변화 특성, 한국환경독성학회지 1998a; 13: 43-53
  13. 정 용, 박성은, 황만식. 대기 부유분진 중 다환방향족 탄화수소류의 계절적 입경농도 분포 변이, 한국대기보전학회지 1998b; 14: 577-588
  14. 조기철, 이승일, 김달호, 허귀석, 김희강. 도시대기부유분진중 다환방향족 탄화수소의 농도 및 입경 분포 특성, 한국대기보전학회지 1994; 10: 57-63
  15. 조용성, 이홍석, 김윤신, 이종태, 박진수. 서울 성동구 지역 미세먼지의 화학적 조성에 관한 연구, 한국환경과학회지 2003; 12: 665-676
  16. 최성우, 윤성훈. 대구지역 부유분진중 Polycyclic Aromatic Hydrocarbons의 발생원 특성, 한국환경위생학회지 2000; 26: 34-40
  17. 최진수, 백성옥. 도시 대기 중 PM10에 함유된 다환방향족 탄화수소의 농도분포특성과 주요 영향인자, 한국대기환경학회지 2003; 19: 33-443
  18. Adams HS, Nieuwenhuijsen, MJ, Colvile, RN, McMullen, MAS and Khandelwal, P. Fine particle ($PM_{2.5}$) personal exposure levels in transport microenvironment, London, UK, Sci Total Environ 2001; 279: 29-44 https://doi.org/10.1016/S0048-9697(01)00723-9
  19. Baek SO, Goldstone M, Kirk P, Lester JN and Perry R. Polycyclic aromatic hydrocarbons: sources, fate and behavior, Int J Water Air Soil Pollution 1991; 60: 279-300 https://doi.org/10.1007/BF00282628
  20. Bahadori T, Suh H and Koutrakis P. Issues in human particulate exposure assessment: Relationship between outdoor, indoor, and personal exposures, Human Ecol Risk Assess 1999; 5: 459-470)132 https://doi.org/10.1080/10807039991289455
  21. Caricchia AM, Chiavarini S and Pezza M. Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy), Atmos Environ 1999; 33: 3731-3738 https://doi.org/10.1016/S1352-2310(99)00199-5
  22. Guo H, Lee SC, Ho KF, Wang XM and Zou SC. Particleassociated polycyclic aromatic hydrocarbons in urban air of Hong Kong, Atmos Environ 2003; 37: 5307-5317 https://doi.org/10.1016/j.atmosenv.2003.09.011
  23. IARC. Polycyclic Aromatic Compounds, Part 1: Chemical, Environmental and Experimental Data. Vol. 32. Lyon, France, IARC Working Group on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, 1983
  24. Kaupp H and McLachlan MS. Atmospheric particle size distribution of polychlorinated $dibenzo-{\rho}-dioxins$ and dibenzofurnans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) and their implications for wet and dry deposition, Atmos Environ 1999; 33: 85-95 https://doi.org/10.1016/S1352-2310(98)00129-0
  25. Korrick SA, Neas LM, Dockery DW, Gold DR, Allen GA, Hill LB, Kimball KD, Rosner BA and Speizer FE. Effects of ozone and other pollutants on the pulmonary function of adult hikers, Environ Health Perspect 1998; 106: 93-99 https://doi.org/10.2307/3433784
  26. Lee HS, Kang B-W, Kwon D-H, Yeo H-G and M-Y. A study on the concentration characteristics of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Chongju, J Kor Soc Atmos Environ 2003; 19: 89-97
  27. Lee JT, Shin D and Chung Y. Air pollution and daily mortality in Seoul and Ulsan, Korea, Environ Health Perspect 1999; 107: 149-154 https://doi.org/10.2307/3434372
  28. Levy JI, Hammitt JK and Spengler JD. Estimating the mortality impacts of particulate matter: What can be learned from between-study variability? Environ Health Perspect 2000; 108: 109-117 https://doi.org/10.2307/3454508
  29. Masclet P, Mouvier G and Nikolaou K. Relative decay index and sources of polycyclic aromatic hydrocarobons, Atmos Environ 1988; 20: 439-446
  30. Masclet P, Pistikopolous P, Beybe S and Mouvier G. Long range transport and gas/particle distribution of polycyclic aromatic hydrocarbons at a remote site in the Mediterranean sea, Atmos Environ 1988; 22: 639-650 https://doi.org/10.1016/0004-6981(88)90002-9
  31. Menichini E, Monfredini F and Merli F. The temporal variability of the profile of carcinogenic polycyclic aromatic hydrocarbons in urban air: a study in a medium traffic area in Rome, 1993-1998, Atmos Environ 1999; 33: 3739-3750 https://doi.org/10.1016/S1352-2310(99)00114-4
  32. Menzie CA, Potocki BB and Santodonato J. Exposure to carcinogenic PAHs in the environment, Environ Sci Technol 1992; 26: 1278-1284 https://doi.org/10.1021/es00031a002
  33. Monn C. Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone, Atmos Environ 2001; 35: 1-32
  34. Neas LM, Schwartz J, Dockery DW, Gold DR, Allen GA, Hill LB, Kimball, KD, Rosner BA and Speizer FE. A case-crossover analysis of air pollution and mortality in Philadelphia, Environ Health Perspect 1999; 107: 629-631 https://doi.org/10.2307/3434453
  35. Nisbet C and LaGoy P. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs), Regul Toxicol Pharmacol 1992; 16: 290-300 https://doi.org/10.1016/0273-2300(92)90009-X
  36. Peters A, Liu E, Verrier RL, Schwartz J, Gold DR, Mittleman M, Baliff J, Oh JA, Allen G, Monahan K and Dockery DW. Air pollution and incidence of cardiac arrhythmia, Epidemiol 2000; 11: 11-17 https://doi.org/10.1097/00001648-200001000-00005
  37. Phalen RF. Particulate Air Pollution Controversy-ACase Study and Lessons Learned, Kluwer Academic Publishers, 2002
  38. Rogge WF, Hildemann LM, Mazurek MA, Cass GR and Simonelt BRT. Source of fine organic aerosol. I. Charbroilers and meat cooking operations, Environ Sci Technol 1991; 25: 1112-1125 https://doi.org/10.1021/es00018a015
  39. Schwartz J, Dockery DW and Neas LM. Is mortality associated specifically with fine particles? J Air Waste Manage Assoc 1996; 46: 927-939 https://doi.org/10.1080/10473289.1996.10467528
  40. Tucker WG. An overview of $PM_{2.5}$ sources and control strategies. Fuel Process Technol 2000; 65-66: 379-392 https://doi.org/10.1016/S0378-3820(99)00105-8
  41. U.S. EPA. National Ambient Air Quality Standards for Particulate Matter, Final Rule 40 CFR, part 50. Fed Regist 1997; 62: 38651-38760
  42. U.S. EPA. List of Designated Reference and Equivalent Methods, National Exposure Research Laboratory, Research Triangle Park, NC, USA, October 9, 2003
  43. Vecchi R, Marcazzan G, Valli G, Ceriani M and Antoniazzi C. Therole of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy), Atmos Environ 2004; 38: 4437-4446 https://doi.org/10.1016/j.atmosenv.2004.05.029
  44. Westerholm R, Almen J, Li H, Rannug U and Rogen A. Exhaust emissions from gasoline fuelled light duty vehicles operated in different driving conditions: a chemical and biological characterization. Atmos Environ Part B 1992; 26(B): 79-90 https://doi.org/10.1016/0957-1272(92)90039-U
  45. WHO. Air Quality Guidelines for Europe, WHO Pub European Ser No 23, 1987
  46. http://www.thermo.com/com/cda/product/detail/1,1055,19890,00.html