Preparation of Urethane Nanocomposites with Inorganic Nano Fillers and Their Physical Properties

무기계 나노분말 충전 폴리우레탄 나노복합재료의 제조 및 물성

  • Yang Yun-Kyu (School of Advanced Materials Engineering, College of Engineering, Chungnam National University) ;
  • Hwang Taek-Sung (School of Advanced Materials Engineering, College of Engineering, Chungnam National University) ;
  • Hwang Eui-Hwan (Kongju national University)
  • 양윤규 (충남대학교 공과대학 신소재공학부) ;
  • 황택성 (충남대학교 공과대학 신소재공학부) ;
  • 황의환 (공주대학교 공과대학 화학공학부)
  • Published : 2006.03.01

Abstract

Nanocomposites of polyurethane were prepared from inorganic nano particles, $Na^+-montmorillonite$ (MMT), silica, $CaCO_3$, and surface modified MMT and their properties were investigated. It was shown that the molecular weight and polydispenity of nanocomposites of polyurethane were 20000 to 28000 and 1.0 to 2.0, respectively. d-Spacing for nanocomposites of MMT were increased than that of pure MMT. Initial degradation temperature of nanocomposites were 250 to $280^{\circ}C$. And also, the range of weight loss for nanocomposites were decreased and the end of thermal degradation was observed at higher temperatures about $50^{\circ}C$. The elongation at break for $CaCO_3$ filled nanocomposites were the highest among the nanocomposites used in this study. studied. It was found that the tensile strength increased with increasing the filler contents while the silica nanocomposite exhibited the lowest increase and the $CaCO_3$ nanocomposite the highest.

[ $Na^+-Montmorillonite(MMT)$ ], 실리카, 탄산칼슘 및 MMT를 표면 개질한 무기 나노입자를 이용한 나노복합재료를 제조하고 이들의 열적 특성을 고찰하였다. 나노복합재료의 연속상 폴리우레탄의 분자량은 $20000{\sim}28000$이고 충전비에 큰 영향이 없었으며, 이들의 분자량 분포는 $1.5{\sim}2.0$로 비교적 일정하였다. 나노복합재료의 층간거리(d-spacing)는 순수한 충전제의 층간거리보다 모두 증가되었다. 한편 초기 열분해 온도는 폴리우레탄 매트릭스보다 모두 높게 나타났으며, 나노복합재료의 초기 열분해 온도는 $250{\sim}280^{\circ}C$ 이었다. 또한 열중량 감소 폭도 나노복합재료의 경우가 낮았으며, 완전 열분해 온도는 약 $50^{\circ}C$ 높게 나타났다. 인장강도는 탄산칼슘 충전 복합재료가 가장 높았으며, 신율은 MMT 충전 나노 복합재료가 247%로 가장 크게 나타났다. 또한 충전제의 함량이 증가할수록 인장강도는 증가하였으며 실리카 충전 복합 재료의 인장강도가 가장 낮게 나타났고, 탄산칼슘 충전 복합재료의 인장강도가 가장 높게 나타났다.

Keywords

References

  1. P. K. Saxena, K. G. Raut, S. R. Srinivasan, S. Sivaram, R. S. Rawat, and R. K. Jain, Constr. Build Meter., 5, 208 (1991) https://doi.org/10.1016/0950-0618(91)90052-M
  2. M. Y. L. Chew, X. Zhou, and Y. M. Tay, Polym. Testing, 20, 87 (2001) https://doi.org/10.1016/S0142-9418(00)00005-2
  3. Y. W. Tang, J. P. Santerre, R. S. Labow, and D. G. Taylor, J. Appl. Polym. Sci., 62, 1133 (1996) https://doi.org/10.1002/(SICI)1097-4628(19961121)62:8<1133::AID-APP1>3.0.CO;2-J
  4. C. Tonelli, T. Trombetta, M. Scicchitano, and G. Castiglioni, J. Appl. Polym. Sci., 57, 1031 (1995) https://doi.org/10.1002/app.1995.070570902
  5. J. Boxhammer, Polym. Testing, 20, 719 (2001) https://doi.org/10.1016/S0142-9418(01)00029-0
  6. M. W. Noh and D. C. Lee, J. Appl. Polym. Sci., 74, 2811 (1999) https://doi.org/10.1002/1097-4628(19991213)74:12<2811::AID-APP4>3.0.CO;2-3
  7. R. Krishnamoorti and R. A. Vaia, ACS Symp. Ser., 804, 7 (2002)
  8. M. V. Pandya, D. D. Deshpande, and D. G. Hundiwale, J. Appl. Polym. Sci., 32, 4959 (1986) https://doi.org/10.1002/app.1986.070320518
  9. P. Aranda and E. Rtriz-Hitzky, Chem. Mater., 4, 1395 (1992) https://doi.org/10.1021/cm00024a048
  10. P. Maiti, C. A. Batt, and E. P. Giannelis, Polym. Mater. Sci. Eng., 88, 58 (2003)
  11. M. Alexandre and D. Dubois, Mater. Sci. Eng., 28, 1 (2000) https://doi.org/10.1016/S0927-796X(00)00012-7
  12. T. K. Chen and K. H. Wei, Polymer, 41, 1345 (2000) https://doi.org/10.1016/S0032-3861(99)00280-3
  13. P. N. Lan, S. Corneillie, E. Schaacht, M. Davies, and A. Shard, Biomaterials, 17, 2273 (1996) https://doi.org/10.1016/0142-9612(96)00056-7
  14. H. V. Boening, C. B. Miller, and J. E. Shottafter, J. Appl. Polym. Sci., 9, 523 (1965) https://doi.org/10.1002/app.1965.070090214
  15. S. L Reegen, J. Appl. Polym. Sci., 10, 1247 (1966) https://doi.org/10.1002/app.1966.070100903
  16. H. M. Jeong, B. K. Kim, and Y. J. Choi, Polymer, 41, 1849 (2000) https://doi.org/10.1016/S0032-3861(99)00334-1
  17. D. J. David and H. B. Staley, Analytical Chemistry of Polyurethane, Wiley-Interscience, New York, 1969
  18. G. Hernandez-Paron, R. M. Lima, R. Nava, M. V. Garcia-Garduno, and V. M. Castano, Adv. Polym. Technol., 21, 116 (2002) https://doi.org/10.1002/adv.10015
  19. H. M. Jeong, B. K. Kim, and Y. J. Choi, Polymer, 41, 1849 (2000) https://doi.org/10.1016/S0032-3861(99)00334-1
  20. Y. U. An, J. H. Chang, Y. H. Park, and J. M. Park, Polymer(Korea), 26, 381 (2002)
  21. J. W. Gilman, C. L. Jackson, A. B. Morgan, and R. H. Harris, Jr., Chem. Meter., 12, 1866 (2002)
  22. J. P. Kim, S. G. Lyu, K. S. Bae, and G. S. Sur, Polymer(Korea), 25, 263 (2001) https://doi.org/10.1016/0032-3861(84)90335-5