Deducing Isoform Abundance from Exon Junction Microarray

  • Kim Po-Ra (Bioinformatics Team, IT-BT group, Electronics and Telecommunications Research Institute) ;
  • Oh S.-June (Department of Pharmacology & Pharmacogenomics Research Center, College of Medicine, Inje University) ;
  • Lee Sang-Hyuk (Division of Molecular Life Sciences, Ewha Womans University)
  • Published : 2006.03.01

Abstract

Alternative splicing (AS) is an important mechanism of producing transcriptome diversity and microarray techniques are being used increasingly to monitor the splice variants. There exist three types of microarrays interrogating AS events-junction, exon, and tiling arrays. Junction probes have the advantage of monitoring the splice site directly. Johnson et al., performed a genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays (Science 302:2141-2144, 2003), which monitored splicing at every known exon-exon junctions for more than 10,000 multi-exon human genes in 52 tissues and cell lines. Here, we describe an algorithm to deduce the relative concentration of isoforms from the junction array data. Non-negative Matrix Factorization (NMF) is applied to obtain the transcript structure inferred from the expression data. Then we choose the transcript models consistent with the ECgene model of alternative splicing which is based on mRNA and EST alignment. The probe-transcript matrix is constructed using the NMF-consistent ECgene transcripts, and the isoform abundance is deduced from the non-negative least squares (NNLS) fitting of experimental data. Our method can be easily extended to other types of microarrays with exon or junction probes.

Keywords

References

  1. Bracco, L. and Kearsey, J. (2003).The relevanceof alternative RNA splicing to pharmacogenomics. TRENDS in Biotech. 21, 346-352 https://doi.org/10.1016/S0167-7799(03)00146-X
  2. Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D.H., Johnson, D., Luo, S., McCurdy, S., Foy, M., Ewan, M., Roth, R., George, D., Eletr, S., Albrecht, G., Vermaas, E., Williams, S.R., Moon, K., Burcham, T., Pallas, M., DuBridge, R.B., Kirchner, J., Fearon, K., Mao, J., and Corcoran, K. (2000). Geneexpression analysisby massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnol. 18, 630-634 https://doi.org/10.1038/76469
  3. Cheng, J., Kapranov, P., Drenkow, J., Dike, S., Brubaker, S., Patel, S., Long, J., Stern, D., Tammana, H., Helt, G., Sementchenko, V., Piccolboni, A., Bekiranov, S., Bailey, D.K., Ganesh, M., Ghosh, S., Bell, I., Gerhard, D.S., and Gingeras, T.R. (2005). Transcriptional Maps of 10 Human Chromosomes at 5-Nucleotide Resolution. Science 308, 1149-1154 https://doi.org/10.1126/science.1108625
  4. Fehlbaum, P., Guihal, C., Bracco, L., and Cochet, O. (2005). A microarray configuration to quantify expression levels and relative abundance of splice variants. Nucleic Acids Res. 33, e47 https://doi.org/10.1093/nar/gni047
  5. Hu,G.K., Madore,S.J., Moldover, B., Jatkoe, T., Balaban, D., Thomas, J., and Wang, Y. (2001). Predicting splice variant from DNA chip expression data. Genome Res. 11,1237-1245 https://doi.org/10.1101/gr.165501
  6. Imanishi, T., Itoh, T., Suzuki, Y., O'Donovan, C., Fukuchi, S., and et al., (2004). Integrative annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones. PLOS Bio. 2, 856-875
  7. Johnson, J.M., Castel, J., Garrett-Engele, P., Kan, Z., Loerch, P.M., Armour, C.o., Santos, R., Schadt, E.E., Stoughton, R., and Shoemaker,DD, (2003).Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141-2144 https://doi.org/10.1126/science.1090100
  8. Kampa, D., Cheng, J., Kapranov, P., Yamanaka, M., Brubaker, S., Cawley, S., Drenkow, J., Piccolboni, A., Bekiranov, S., Helt, G., Tammana, H., and Gingeras, T.R. (2004). Novel RNAs Identified From an In-Depth Analysis of the Transcriptome of Human Chromosomes 21 and 22. Genome Res. 14, 331-342 https://doi.org/10.1101/gr.2094104
  9. Kim, P., Kim, N., Lee, Y., Kim, B., Shin, Y., and Lee, S. (2005). ECgene: genome annotation for alternative splicing. Nucleic Acids Res. 33, D75-D79 https://doi.org/10.1093/nar/gni075
  10. Lawson, C.L. and Hanson, R.J. (1974). Solving Least Squares Problem, Prentice-Hall, Engelwood Cliffs, N.J
  11. Lee, D.O. and Seung, H.S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature 401, 788-791 https://doi.org/10.1038/44565
  12. Modrek, B., Resch, A., Grasso C., and Lee, C. (2001). Genome-wide detection of alternative splicing in expressed sequences of human gene. Nucleic Acids Res. 29, 2850-2859 https://doi.org/10.1093/nar/29.13.2850
  13. Pan, Q., Shai, O., Misquitta, C., Zhang, W., Saltzman, A.L., Mohammad, N., Babak, T., Siu, H., Hughes, T., Morris, Q.D., Frey, B.J., and Blencowe, B.J. (2004). Revealing global regulatory features of mammalian altemative splicing using a quantitative microarray platform. Mol. Cell 16, 929-941 https://doi.org/10.1016/j.molcel.2004.12.004
  14. Shai. O., Morris. Q.D., Blencowe, B.J., and Frey, B.J. (2005). Inferring global leels of alternative splicing isoforms using a generative model of microarray data. Bioinformatics 22, 606-613 https://doi.org/10.1093/bioinformatics/btk028
  15. Shoemaker,D.D., Schadt,E.E., Armour, C.D., He, Y.D., Garrett-Engele, P. et al. (2001). Experimental annotation of the human genome using microarray technology. Nature 409. 922-927 https://doi.org/10.1038/35057141
  16. Strausberg, L.R., Feingold, E.A, Klausner, R.D., and Collins, F.S. (1999). The mammalian gene collection. Science 286, 455-457 https://doi.org/10.1126/science.286.5439.455
  17. Ule, J., Ule, A., Spencer, J., Williams, A., Hu, J. Cline, M. Wang, H., Clark, T., Fraser, C., Ruggiu, M., Zeeberg, B.R., Kane, D., Weinstein, J.N., Blume, J., and Darnell, A.B. (2005). Nova regulates brain-specific splicing to shape the synapse. Nature Genet. 37, 844-852
  18. Wang, H., Hubbell, E., Hu, J., Mei, G., Cline, M., Lu, G., Clark,T., Siani-Rose, M.A., Ares, M., Kulp, D.C., and Haussler, D. (2003). Gene structure-based splice variant deconvolution using microarray platform. Bioinformatics 19, i315-i322 https://doi.org/10.1093/bioinformatics/19.2.315
  19. Xu, Q., Modrek, B., and Lee, C. (2002). Genome-wide detection of tissue-specific alternative splicing in the human transcriptome, Nucleic Acids Res. 30, 3754-3766 https://doi.org/10.1093/nar/gkf492