Identification of hRad21-Binding Sites in Human Chromosome

  • Chin Chur (Department of Biochemistry and Molecular Biology, College of Medicine, Pusan National University) ;
  • Chung Byung-Seon (Department of Biochemistry and Molecular Biology, College of Medicine, Pusan National University)
  • Published : 2006.03.01

Abstract

The aim of this study is to identify hRad21-binding sites in human chromosome, the core component of cohesin complex that held sister chromatids together. After chromatin immunoprecipitation with an hRad21 antibody, it was cloned the recovered DNA and sequenced 30 independent clones. Among them, 20 clones (67%) contained repetitive elements including short interspersed transposable elements (SINE or Alu elements), long terminal repeat (LTR) and long interspersed transposable elements (LINE), fourteen of these twenty (70%) repeats clones had Alu elements, which could be categorized as the old and the young Alu Subfamily, eleven of the fourteen (73%) Alu elements belonged to the old Alu Subfamily, and only three Alu elements were categorized as young Alu subfamily. There is no CpG island within these selected clones. Association of hRad21 with Alu was confirmed by chromatin immunoprecipitation-PCR using conserved Alu primers. The primers were designed in the flanking region of Alu, and the specific Alu element was shown in the selected clone. From these experiments, it was demonstrated that hRad21 could bind to SINE, LTRs, and LINE as well as Alu.

Keywords

References

  1. Riedel, C.G., Gregan, J., Gruber, S., and Nasmyth, K. (2004). Is chromatin remodeling required to build sister chromatid cohesion? Trends Biochem. Sci. 8, 389-392
  2. Morrison, C., Vagnarelli, P., Sonoda, E., Takeda, S., and Earnshaw, W.C. (2003). Sister chromatid cohesion and genome stability in vertebrate cells. Biochem. Soc. Trans. 31, 263-265 https://doi.org/10.1042/BST0310263
  3. Cairns, B.R. (2003). Chromatin remodeling complexes: strength in diversity, precision through specialization. Curro Opin. Genet. Dev. 15, 185-190
  4. Lehmann, A.R. (2005). The role of SMC proteins in the responses to DNA damage. DNA Repair 4, 309-314 https://doi.org/10.1016/j.dnarep.2004.07.009
  5. PaPi, M., Berdougo, E., Randall, C.L., Ganguly, S., and Jallepalli, P.V. (2005). MultiPle roles for separase auto-cleavage during the G2/M transition. Nat. Cell Biol. 7,1029-1035 https://doi.org/10.1038/ncb1303
  6. Pati, D., Zhang, N., and Pion, S.E. (2002). Linking sister chromatid cohesion and apoptosis: role of Rad21. Mol. Cell Biol. 22, 8267-8277 https://doi.org/10.1128/MCB.22.23.8267-8277.2002
  7. Strom. L. and Sjogren, C. (2005). DNA damage-induced cohesion. Cell Cycle 4, 536-539 https://doi.org/10.4161/cc.4.4.1613
  8. Hakimi, M.A., Bochar, D.A., Schmiesing, J.A., Dong, Y., Barak, O.G., Speicher, D.W., Yokomori, K., and Shiekhatter, R. (2002). A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418, 994-998 https://doi.org/10.1038/nature01024
  9. Xu, H., Beasley, M., Erschoor, S., Inselman, A., Handel, M.A., and Mckay, M.J. (2004). A new role for the mitotic Rad21/Sccl cohesin in meiotic chromosome cohesion and segregation in the mouse. EMBO J. 5, 378-384 https://doi.org/10.1038/sj.embor.7400121
  10. Kondo, Y. and Issa, J.P. (2003). Enrichment for histone H3 lysine methylation at Alu repeatsin Humancells. J. BioI. Chem. 278, 27658-27662 https://doi.org/10.1074/jbc.M304072200
  11. Glynn, E.F., Megee, P.C., Yu, H.G., Mistrot, C., Unal, E., Koshland, D.E, DeRish, J.L., and Gerton, J.L. (2004). Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS BioI. 2, E259 https://doi.org/10.1371/journal.pbio.0020259
  12. Mighell, A.J., Markham, AF., and Robinson. P.A. (1997). Alu Sequences. FEBS Lett. 417,1-5 https://doi.org/10.1016/S0014-5793(97)01259-3
  13. Presscott, L., Deininger, B., Batzer, M.A. (2002). Mammalian Retroelements., Genome Res. 12, 1455-1465 https://doi.org/10.1101/gr.282402
  14. Strom, L., Lindroos, H.B., Shirahige, K., and Sjogren, C. (2005). Postreplicative recruitment cohesion to doublestrand breaks required for DNA repair. Mol. Cell 6, 1003-1015
  15. Huang, C.E., Milutinovich, M., Koshland, D. (2005). Rings, bracelet or snaps: fashionable alternatives for Srnc complexes. PhiloS. Trans R. Soc. Land. B. BioI. Sci. 3160, 537-542
  16. Hirano, T. (2005). SMC proteins and chromosome mechanics: from bacteria to humans. Philos. Trans, R. Soc. Land. B. BioI. Sci. 360, 507-514 https://doi.org/10.1098/rstb.2004.1606
  17. Uhlmann, F. (2004). The mechanism of sister chromatid cohesion. Exp. Cell Res. 296, 80-85 https://doi.org/10.1016/j.yexcr.2004.03.005
  18. Kagansky, A, Freeman, L., Lukyanov, D., and Strunnikov, A (2004). Histone tail independent chromatin binding activity of recombinant cohesion holocompiex. J. BioI. Chem. 279, 3382-3388 https://doi.org/10.1074/jbc.M306078200
  19. Campbell, J.L. and Cohen, F.O. (2002). Chromosome cohesion: ringaroundthe sisters? Trends. Biochem. Sci. 27, 492-495 https://doi.org/10.1016/S0968-0004(02)02194-1
  20. Nasmyth, K. and Haering, C.H. (2005). The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem. 74, 595-648 https://doi.org/10.1146/annurev.biochem.74.082803.133219
  21. Jessberger, R. (2002). The many functionsof SMC proteins in chrmosome dynamics. Nat. Rev. Mol. Cell BioI. 3, 767-378 https://doi.org/10.1038/nrm930
  22. Marston, A.L., Tham,W.H., Shah, H., and Amon, A (2003). A gennome-wide screen identifies genes required for centromeric cohesion. Science 303, 1367-1370 https://doi.org/10.1126/science.1094220
  23. Hogue, M.T.and Ishikawa, F. (2002). Cohesindefectslead to premature sister chromatid separation, kinetochore dysfunction, andspindle-assembly checkpoint activation. J. BioI. Chem. 277, 42306-42314 https://doi.org/10.1074/jbc.M206836200
  24. Jessberger, R. (2003). SMC proteins at the crossroads of diverse chromosomal Processes. IUBMB Life 55, 643-652 https://doi.org/10.1080/15216540310001639661
  25. Volkov, A., Mascarenhas, J., Andrei-Selmer, C., Ulrich, H.D., and Graumann, P.A. (2003). prokaryotic condensin/ cohesin-like complex canactivelycompact chromosomes from a single positionon the nucleoidand binds to DNA as a ring-like structure. Mol. Cell BioI. 23, 5638-5650 https://doi.org/10.1128/MCB.23.16.5638-5650.2003
  26. Jessberger, R.(2005). Howto divorcer engaged chromsomes? Mol. Cell BioI. 25, 18-22 https://doi.org/10.1128/MCB.25.1.18-22.2005