Abstract
Even though the similar land price zone is very important element in the public land appraisal procedure, the concept is implicitly described and applied into the actual land appraisal system. This situation makes it worse when applying for the automatic selection of a comparative standard land parcel. In addition, the division of similar land price zones requires the objective and reasonable process for improving ALPAS(Automatic land Price Appraisal System), which becomes an issue today. To solve the similar land price zone determination problem that is caused by the lack of objective numerical standard, this study proposed a similar land price zone determination method using a hybrid clustering technique. Results showed that this hybrid clustering method that applied into the test area could easily detect similar land price zones with considerable accuracy levels, which are verified with some test statistics and real comparative standard land parcels done by manually.
공시지가 유사가격권의 경우는 비교표준지 선정시 지침상에서 상당히 중요한 요소로 취급되고 있으면서도 실제적으로는 범위와 적용에 관해서 모호한 개념상의 규정을 두고 있다. 이러한 원인에 기인하여 비교표준지의 자동 선정이나 공시지가의 자동 산정에 있어 많은 문제점으로 작용하고 있다. 따라서 신속하고 정확한 비교표준지의 선정과 향후 지가산정 일련의 과정을 전산화하기 위해서는 자동화된 방식으로 유사가격권을 구획할 수 있는 객관적이고 합리적인 방법론이 필요하다. 본 연구에서는 개별공시지가 산정시 유사가격권 설정의 문제를 해결하고자 평균연결법과 K-means 혼합클러스터링 기법을 활용하여 유사가격권을 설정하여보고 이에 대한 타당성을 제시하고자 하였다. 이를 위해 실제 사례지역을 선정하고 실험한 결과 유사가격 권역 별로 군집화가 가능하였고, 현행 유사가격 권역과 많은 차이를 보이지 않아 방법론의 타당성을 제시할 수 있었다.