Gadolinium-Chlorin is Potentially a New Tumor Specific MRI Contrast Agent

  • Published : 2006.03.01

Abstract

In this study, a newly-synthesized metalloporphyrin, Gd-chlorin (PB Chlorin), was investigated by using a simple tissue phantom to test its efficacy as an MRI contrast agent. This study demonstrated the potential activity of Gd-chlorin as not only a MRI contrast agent, but also as a PDT photosensitizer by using a simple tissue phantom and conducting a very brief MRI experiment.

Keywords

References

  1. Almeida, R. D., Manadas, B. J., Carvalho, A. P., and Duarte, C. B., Intracellular signaling mechanisms in photodynamic therapy. Biochim. Biophys. Acta, 1704, 59-86 (2004)
  2. Chwilkowska, A., Saczko, J., Modrzycka, T., Marcinkowska, A., Malarska, A., Bielewicz, J., Patalas, D., and Banas, T., Uptake of photofrin II, a photosensitizer used in photodynamic therapy, by tumour cells in vitro. Acta Biochim. Polonica, 50, 509-513 (2003)
  3. Damoiseau, X., Schuitmaker, H. J., Lagerberg, J. W. M., and Hoebeke, M., Increase of the photosensitizing efficiency of the Bacteriochlorin a by liposome-incorporation. J. Photochem. Photobiol. B Biol., 60, 50-60 (2001) https://doi.org/10.1016/S1011-1344(01)00118-X
  4. Decreau, R., Richard, M. J., Verrando, P., Chanon, M., and Julliard, M., Photodynamic activities of silicon phthalocyanines against achromic M6 melanoma cells and healthy human melanocytes and keratinocytes. J. Photochem. Photobiol. B Biol., 48, 48-56 (1999) https://doi.org/10.1016/S1011-1344(99)00008-1
  5. Ichikawa, K., Takeuchi, Y., Yonezawa, S., Hikita, T., Kurohane, K., Namba, Y., and Oku, N., Antiangiogenic photodynamic therapy (PDT) using Visudyne causes effective suppression of tumor growth. Cancer Lett., 205, 39-48 (2004) https://doi.org/10.1016/j.canlet.2003.10.001
  6. Lee, W. Y., Lim, D. S., Ko, S. H., Park, Y. J., Ryu, K. S., Ahn, M. Y., Kim, Y. R., Lee, D. W., and Cho, C. W., Photoactivation of pheophorbide a induces a mitochondrial-mediated apoptosis in Jurkat leukaemia cells. J. Photochem. Photobiol. B Biol., 75, 119-126 (2004) https://doi.org/10.1016/j.jphotobiol.2004.05.005
  7. Lim, D. S., Ko, S. H., and Lee, W. Y., Silkworm-pheophorbide a mediated photodynamic therapy against B16F10 pigmented melanoma. J. Photochem. Photobiol. B Biol., 74, 1-6 (2004) https://doi.org/10.1016/j.jphotobiol.2003.11.003
  8. Lim, D. S., Ko, S. H., Won, D. H., Lee, and C. H., Lee, W. Y., Photodynamic anti-tumor activity of a new chlorine-based photosensitizer against Lewis Lung Carcinoma cells in vitro and in vivo. J. Porphyrins Phthalocyanines, 7, 155-161 (2003) https://doi.org/10.1142/S1088424603000215
  9. Sharman, W. M., Allen, C. M., and van Lier, J. E., Photodynamic therapeutics: basic principles and clinical applications. Drug Discovery Today, 4, 507-517 (1999) https://doi.org/10.1016/S1359-6446(99)01412-9
  10. Smith, K. M., Goff, D. A., and Simpson, D. J., Meso substitution of chlorophyll derivatives: Direct route for transformation of bacteriopheophorbides d into bacteriopheophorbides c. J. Am. Chem. Soc., 107, 4946-4954 (1985) https://doi.org/10.1021/ja00303a021
  11. Sternberg, E. D. and Dolphin, D., Porphyrin-based photosensitizers for Use in Photodynamic Therapy. Tetrahedron, 54, 4151-4202 (1998) https://doi.org/10.1016/S0040-4020(98)00015-5