DOI QR코드

DOI QR Code

Removing the Noisy Behavior of the Time Domain Passivity Controller

시간영역 수동제어기의 미세떨림현상 제거

  • 유지환 (한국기술교육대학교 기계정보공학부)
  • Published : 2006.04.01

Abstract

A noisy behavior of the time domain passivity controller during the period of low velocity is analyzed. Main reasons of the noisy behavior are investigated through a simulation with a one-DOF (Degree of Freedom) haptic interface model. It is shown that the PO/PC is ineffective in dissipating the produced energy when the sign of the velocity, which is numerically calculated from the measured position, is suddenly changed, and when this velocity is zero. These cases happen during the period of low velocity due to the limited resolution of the position sensor. New methods, ignoring the produced energy from the velocity sign change, and holding the control force while the velocity is zero, are proposed for removing the noisy behavior. The feasibility of the developed methods is proved with both a simulation and a real experiment.

Keywords

References

  1. R. J. Adams and B. Hannaford, 'Stable haptic interaction with virtual environments,' IEEE Trans. on Robotics and Automation, vol. 15, no. 3, pp. 465-474, 1999 https://doi.org/10.1109/70.768179
  2. R. J. Anderson and M. W. Spong, 'Asymptotic stability for force reflecting teleoperators with time delay,' Int. Journal of Robotics Research, vol. 11, no.2,pp. 135-149, 1992 https://doi.org/10.1177/027836499201100204
  3. F. Barbagli, D. Prattichizzo and K. Salisbury, 'Multirate analysis of haptic interaction stability with deformable objects,' IEEE Int. Conf. on Decision and Control, Italy, 2002, pp. 917-922 https://doi.org/10.1109/CDC.2002.1184625
  4. J. E. Colgate, and J. M. Brown, 'Factors affecting the z-width of a haptic display,' Proc. IEEE Int. Conf. Robot. Automat, San Diego,CA, May 1994,pp.3205-3210 https://doi.org/10.1109/ROBOT.1994.351077
  5. J. E. Colgate, and G. Schenkel, 'Passivity of a class of sampled data systems: application to haptic interfaces,' American Control Conference, Baltimore, MD, 1994, pp. 3236-3240 https://doi.org/10.1109/ACC.1994.735172
  6. B. Hannaford, and J. H. Ryu, 'Time domain passivity control of haptic interfaces,' IEEE Trans. on Robotics and Automation, vol. 18, no. 1, pp. 1-10, 2002 https://doi.org/10.1109/70.988969
  7. F. Janabi-Sharifi, V. Hayward, and C.-S. J. Chen, 'Discrete-time adaptive windowing for velocity estimation,' IEEE Trans. on Control Systems Technology, vol. 8, no. 6, pp, 1003-1009, 2000 https://doi.org/10.1109/87.880606
  8. Y. S. Kim and B. Hannaford, 'Some practical issues in time domain passivity control of haptic interfaces,' Proc. IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems, Maui, Hawaii, 2001,pp.1744-1750 https://doi.org/10.1109/IROS.2001.977230
  9. B. Kumar, and S. C. Dutta Roy, 'Design of digital differentiators for low frequencies,' Proc. IEEE, vol. 76, pp. 287-289, Mar. 1988 https://doi.org/10.1109/5.4408
  10. D. Lee, and P. Y. Li, 'Towards robust passivity: A passive control implementation structure for mechanical teleoperators,' 11th Haptics and Teleoperator Symposium, Los Angeles, March 2003, pp. 132-139 https://doi.org/10.1109/HAPTIC.2003.1191255
  11. S. Mahapatra, and M. Zefran, 'Stable haptic interaction with switched virtual environments,' Proc. IEEE Int. Conf. Robot. Automation. Taipei, Taiwan, 2003, pp 14-19 https://doi.org/10.1109/ROBOT.2003.1241762
  12. D. T. McRuer, 'Human dynamics in man-machine systems,' Automatica, vol. 16, no. 3, pp. 237-253, 1980 https://doi.org/10.1016/0005-1098(80)90034-5
  13. D. T. McRuer, and E. S. Krendel, 'The human operator as a servo element,' J. Franklin Inst., vol. 267, pp. 381-403, 1959 https://doi.org/10.1016/0016-0032(59)90091-2
  14. B. E. Miller, J. E. Colgate and R. A. Freeman, 'Environment delay in haptic systems,' Proc. IEEE Int. Conf. Robot. Automat., San Francisco, CA, April, 2000, pp. 2434-2439 https://doi.org/10.1109/ROBOT.2000.846392
  15. G. Niemeyer and J. J. Slotine, 'Stable adaptive teleoperation,' IEEE Journal of Oceanic Engineering, vol. 16, pp. 152-162, 1991 https://doi.org/10.1109/48.64895
  16. J. H. Ryu, D. S. Kwon and B. Hannaford, 'Stable teleoperation with time domain passivity control,' IEEE Trans. on Robotics and Automation, vol. 20, no. 2, pp. 365-373, 2004 https://doi.org/10.1109/TRA.2004.824689
  17. J. H. Ryu, Y. S. Kim, and B. Hannaford, 'Sampled and continuous time passivity and stability of virtual environments,' IEEE Trans. on Robotics, vol. 20, no. 4, pp. 772-776, 2004 https://doi.org/10.1109/TRO.2004.829453
  18. J. H. Ryu, B. Hannaford, C. Preusche, and G Hirzinger 'Time domain passivity control with reference energy behavior,' Poc. IEEF/RSJ Int. Conf. on Intelligent Robotics and Systems, Las Vegas, USA, 2003, pp. 2932-2937 https://doi.org/10.1109/IROS.2003.1249316
  19. S. Stramigioli, C. Secchi and A. J. van der Schaft, 'A novel theory for sampled data system passivity,' IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems, Switzerland, 2002, pp. 1936-1941 https://doi.org/10.1109/IRDS.2002.1044039
  20. A. J. van der Schaft, 'L2-gain and passivity techniques in nonlinear control,' Springer, Communications and Control Engineering Series, 2000
  21. J. C. Willems, 'Dissipative dynamical systems, part I: General theory,' Arch Rat. Mech An., vol. 45, pp. 321-351,1972 https://doi.org/10.1007/BF00276493
  22. C. B. Zilles and J. K. Salisbury, 'A constraint-based god-object method for haptic display,' Proc. IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems, Pittsburgh, PA, 1995, pp. 146-151 https://doi.org/10.1109/IROS.1995.525876