GA-Based Construction of Fuzzy Classifiers Using Information Granules

  • Kim Do-Wan (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Lee Ho-Jae (Department of Electronic Engineering, Inha University) ;
  • Park Jin-Bae (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Joo Young-Hoon (School of Electronic and Information Engineering, Kunsan National University)
  • Published : 2006.04.01

Abstract

A new GA-based methodology using information granules is suggested for the construction of fuzzy classifiers. The proposed scheme consists of three steps: selection of information granules, construction of the associated fuzzy sets, and tuning of the fuzzy rules. First, the genetic algorithm (GA) is applied to the development of the adequate information granules. The fuzzy sets are then constructed from the analysis of the developed information granules. An interpretable fuzzy classifier is designed by using the constructed fuzzy sets. Finally, the GA is utilized for tuning of the fuzzy rules, which can enhance the classification performance on the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example, the classification of the Iris data, is provided.

Keywords

References

  1. Y. H. Joo, H. S. Hwang, K. B. Kim, and K. B. Woo, 'Linguistic model identification for fuzzy system,' Electron. Letter, vol. 31, no. 4, pp. 330-331, 1995 https://doi.org/10.1049/el:19950163
  2. Y. H. Joo, H. S. Hwang, K. B. Kim, and K. B. Woo, 'Fuzzy system modeling by fuzzy partition and GA hybrid schemes,' Fuzzy Sets Syst., vol. 86, no. 3, pp. 279-288, 1997 https://doi.org/10.1016/S0165-0114(95)00414-9
  3. J. S. Baras and S. Dey, 'Combined compression and classification with learning vector quantization,' IEEE Trans. on Information Theroy, vol. 45, no. 6, pp. 1911-1920, 1999 https://doi.org/10.1109/18.782112
  4. G. Tzanetakis and P. Cook, 'Musical genre classification of audio signals,' IEEE Trans. on Speech and Audio Processing, vol. 10, no. 5, pp. 293-302, 2002 https://doi.org/10.1109/TSA.2002.800560
  5. J. Huang, M. Negnevitsky, and D. T. Nguyen, 'A neural-fuzzy classifier for recognition of power quality disturbances,' IEEE Trans. on Power Delivery, vol. 17, no. 2, pp. 609-616, 2002 https://doi.org/10.1109/61.997947
  6. M. A. Greenspan, 'Geometric probing of dense range data,' IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp. 495-508, 2002 https://doi.org/10.1109/34.993557
  7. S. Abe and R. Thawonmas, 'A fuzzy classifier with ellipsoidal regions,' IEEE Trans. on Fuzzy Systems, vol. 5, no. 3, pp. 358-368, 1997 https://doi.org/10.1109/91.618273
  8. L. A. Zadeh, 'Fuzzy sets,' Informat. Control, vol. 8, pp. 338-353, 1965 https://doi.org/10.1016/S0019-9958(65)90241-X
  9. L. X. Wang and J. M. Mendel, 'Generating fuzzy rules by learning from examples,' IEEE Trans. Syst., Man, Cybern. B., vol. 22, no. 6, pp. 1414-1427, 1992 https://doi.org/10.1109/21.199466
  10. H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, 'Selecting fuzzy if-then rules for classification problems using genetic algoritms,' IEEE Trans. on Fuzzy Systems, vol. 3, no. 3, pp. 260-270, 1995 https://doi.org/10.1109/91.413232
  11. R. Thawonmas and S. Abe, 'A novel approach to feature selection based on analysis of class regions,' IEEE Trans. Syst., Man, Cybern. B., vol. 27, no. 2, pp. 196-207, 1997 https://doi.org/10.1109/3477.558798
  12. S. Abe and M. S. Lan, 'A method for fuzzy rules extraction directly from numerical data and its application to pattern classification,' IEEE Trans. Fuzzy Systems, vol. 5, no. 1, pp. 358-368, 1995 https://doi.org/10.1109/91.618273
  13. H. M. Lee, C. M. Chen, J. M. Chen, and Y. L. selection based on fuzzy entropy,' IEEE Trans. Syst., Man, Cybern. B., vol. 3, no. 3, pp. 426-432, 1997
  14. T. P. Wu and S. M. Chen, 'A new method for constructing membership functions and fuzzy rules from training examples,' IEEE Trans. Syst., Man, Cybern. B., vol. 29, no. 1, pp. 25-40, 1999 https://doi.org/10.1109/3477.740163
  15. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison- Wesley publishing company, Inc., 1989
  16. W. Pedrycz and A. Bargiela, 'Granular clustering: A granular signature of data,' IEEE Trans. Syst., Man, Cybern. B., vol. 32, no. 2, pp. 212-224, 2002 https://doi.org/10.1109/3477.990878
  17. S. M. Chen, M. S. Yeh, and P. Y. Hsiao, 'A comparison of similarity measures of fuzzy values,' Fuzzy Sets Syst., vol. 72, no. 1, pp. 79-89, 1995 https://doi.org/10.1016/0165-0114(94)00284-E
  18. V. R. Young, 'Fuzzy subsethood,' Fuzzy Sets Syst., vol. 77, no. 3, pp. 371-384, 1996 https://doi.org/10.1016/0165-0114(95)00045-3
  19. M. Reformat and W. Pedrycz, 'Evolutionary optimization of information granules,' Proc. IFSA World Congress, 20th NAFIPS Int. Conf., Joint 9th, vol. 4, pp. 2035-2040, 2001
  20. C. J. Merz and P. M. Murphy, 'UCI repository of machine learning databases,' http://www. ics. uci.edu/mlearn/MLRepository.html, Irvine, Dept. of Information and Computer Science, Univ. of California, Irvine, 1996
  21. N. Kasabov, 'Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems,' Fuzzy Sets Syst., vol. 82, no. 2, pp. 135-149, 1996 https://doi.org/10.1016/0165-0114(95)00300-2
  22. N. Kasabov and B. Woodford, 'Rule insertion and rule extraction from evolving fuzzy neural networks: Algorithms and applications for building adaptive, intelligent expert systems,' Proc. IEEE Int. Conf. Fuzzy Syst. FUZZ-IEEE' 99, vol. 3, Seoul, Korea, pp. 1406-1411, Aug. 1999
  23. S. Halgamuge and M. Glesner, 'Neural networks in designing fuzzy systems for real world applications,' Fuzzy Sets Syst., vol. 65, pp. 1-12, 1994 https://doi.org/10.1016/0165-0114(94)90242-9
  24. T. P. Hong and C. Y. Lee, 'Induction of fuzzy rules and membership functions from training examples,' Fuzzy Sets Syst., vol. 84, no. 3, pp. 33-47, 1996 https://doi.org/10.1016/0165-0114(95)00305-3
  25. H. Roubos and M. Setnes 'Compact transparent fuzzy models and classifiers through iterative complexity reduction,' IEEE Trans. Fuzzy Systems, vol. 9, no. 4, pp. 516-524, 2001 https://doi.org/10.1109/91.940965
  26. Y. Shi, R. Eberhart, and Y. Chen, 'Implementation of evolutionary fuzzy systems,' IEEE Trans. on Fuzzy Systems, vol. 7, no. 2, pp. 109-119, 1999 https://doi.org/10.1109/91.755393
  27. Z. Michalewicz, Genetic Algorithms+Data Structures=Evolution Programs, 2nd edition, Springer-Verlag, New York, 1994