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A Data Fusion Algorithm of the Nonlinear System Based
on Filtering Step By Step

Cheng-lin Wen and Quan-bo Ge

Abstract: This paper proposes a data fusion algorithm of nonlinear multisensor dynamic
systems of synchronous sampling based on filtering step by step. Firstly, the object state
variable at the next time index can be predicted by the previous global information with the
systems, then the predicted estimation can be updated in turn by use of the extended Kalman
filter when all of the observations aiming at the target state variable arrive. Finally a fusion
estimation of the object state variable is obtained based on the system global information.
Synchronously, we formulate the new algorithm and compare its performances with those of
the traditional nonlinear centralized and distributed data fusion algorithms by the indexes that
include the computational complexity, data communicational burden, time delay and estimation
accuracy, etc.. These compared results indicate that the performance from the new algorithm is
superior to the performances from the two traditional nonlinear data fusion algorithms.

Keywords: Centralized fusion, distributed fusion, EKF, nonlinear system, step by step.

1. INTRODUCTION

The constantly increasing complexity in modern
military affairs and civil areas is in urgent need of new
technological methods for comprehensively processing,
explaining, and estimating tremendous amounts of
information. Accordingly, the multisensor data fusion
theory can be further developed and the corresponding
technology can be further perfected. The key
problems of data fusion are model design and the
fusion algorithm. By the efforts of many researchers,
we have a series of multisensor system models and
data fusion algorithms all aiming at different objects
[1-12].

Most of the current fusion algorithms demand the
systematic state and observation equation to be linear.
However, many fusion systems can’t always be
described in a simple linear system. So the study and
design of the nonlinear system fusion algorithm have
much sense in theory and a bright future in application
[1]. The traditional fusion algorithms mainly include
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two types; centralized fusion and distributed fusion
(including feedback fusion and non-feedback fusion
and so on). The advantage of the former is its high
fusion accuracy while its defects are great difficulty of
data association and high requirement of the central
processor. Although the latter algorithm can lighten
the computational burden of the central processor
through the local processor, its total computational
complexity (C.C.) and communication burden will
increase [2]. That is to say, none of the current fusion
algorithms can achieve the best in overall
performance; consequently it will affect the appli-
cation of these algorithms in a practical system.

In light of the above problems, this paper
introduces the idea of filtering step by step with a
nonlinear system of synchronous sampling as its
object, and proposes a data fusion algorithm of the
nonlinear system based on filtering step by step. We
prove the effectiveness of the new algorithm by
comparing the performance indexes including C.C. of
the algorithm, communicational complexity, and time
delay of predict and estimate accuracy, etc. with the
traditional nonlinear centralized data fusion algorithm
and distributed data fusion algorithms. It’s basic idea
is: when all of the observations aiming at the target
are obtained, firstly we can predict the object state
based on previous system information and then use
extended Kalman filtering and all of the local
observations to update the estimated value of an
object state in turn. Accordingly we can obtain a
global fusion estimate value of an object state based
on the global information.
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2. FORMULATION OF THE SYSTEM

Consider the kind of nonlinear system

x(ky = f(k—1Lu(k-1),x(k - D)+wk-1), (1)

z;(k) = b (k,x(k)) + v;(k), i=1,2,---,N, (@))]
where the integer k is the sequential time index;
x(k)e R" is the state vector of the object;
u(k—1)e R™ is the input vector ; Nonlinear function
F(k-Lu(k—1),x(k-1)): R” x R" — R" ;the process
noise of the system w(k-1)e R™is the sequence of
zero-mean white Gaussian process noise, satisfying

E{w(k-1)}=0, (3)
E{w(k 1wl (- 1)} = 0k -1)8;,, (4)

where k-1, [-1>0, and Q(k—1) is non negative
definite matrix.

There exist N sensors that observe the
characteristics of object state x(k—1) with the same

sampling velocity 1/7 and sampling simultaneously.

The synchronous sampling of the multisensor system
is shown in Fig. 1. In equation (2), z;(k)e R" is the
observation vector aiming at object state x(k) of
sensor i at time k. hi(k,x(k)) R" > R?i,
possesses of first order continuous partial derivative in
relation to state. Vector v;(k)(i=1,2,---,N) is the

sequence of Gauss white noise possessing statistic
property as follows:

E{v;(k)}=0, (5)
E{s, (V] O} = R(6)3, ;511 ®)
where i,j=1,2,---, N; k,/20 . R, (k) is positive

definite matrix.
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Fig. 1. Sampling of synchronous system.

The initial state x(0) is a random vector, and
satisfies

E{x(0)} =x, )
E{[x(0) = x1[x(0) - %1 } = Ry, ®)

where we suppose that x(0) , w(k—1) and v;(k)
(i =1,---, N) are mutually statistically independent.

3. NONLINEAR FUSION BASED ON
FILTERING STEP BY STEP

3.1. Formulation of algorithm

Generally speaking, with the sensors and the
observation dimension increasing, the C.C. of the
central processor of nonlinear centralized data fusion
algorithm (NLCDFA) will increase sharply and
accordingly affect the executable speed of the central
processor and reduce the practicality of the algorithm.
Nonlinear distributed fusion algorithms consist of the
nonlinear non-feedback fusion algorithm (NLNFFA)
and nonlinear feedback fusion algorithm (NLFBFA).
They realize parallel computation and improve the
computational efficiency in the way of preprocessing
their own measurement information by their local
sensors. The defects of this kind of algorithm are that
its total C.C and communicational burden are
excessively heavy.

In order to reduce total C.C. and communicational
complexity while maintaining high estimate accuracy,
this section presents the nonlinear fusion algorithm
based on filtering step by step (NLFAFSS).

Note

£y =127 0,2 @),z k-DT ©9)
#7217, 27 @) T (N, (10)

where zlk_l (i) denotes the measurement sequence

assembly of sensor i from 1 to (k-1), and zlk_l

denotes the measurement sequence assembly of all of
sensors from 1 to k—1.

The basic idea of the nonlinear data fusion
algorithm based on filtering step by step: if we have
obtained the total estimate value X(k—1|k—1) and
corresponding estimate error covariance matrix
P(k—1|k-1) based on the state x(k—1) at time
k—1, when all of the observations aiming at the
target are obtained, we use extended Kalman filtering
and all of the local observations to estimate the x(k) of
the object state in turn, finally we can obtain a global
fusion estimate value x(k|k) based on the overall

information and corresponding estimate error
covariance matrix P(k | k). The detailed steps are as

follows:
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Fig. 2. The process of filtering step by step.

1) Use x(k—1]|k—1) and P(k—1|k —1) to compute
one step predict value x(k|k—1) and predict error
covariance matrix P(k|k—1).

2) Use z(k) (i=12,---,
value of x(k) sequentially. Accordingly, we can

N) to update the estimate

obtain corresponding estimate value and estimate
error covariance matrix orderly

% (k1) = E{x(k) | £y Gk 1 K),7;(6)
Latez), o an
Bk 1K) = E{%(k | OF (k16)},

= E{x(k)| f~

where i=1,2,---,N , and

Xo (k1K)=x(k|k-1),
Fy(k1k)=P(k|k-1), (12)
%k k)=x(k)-%(k|k) 1<i<N). (13)

3) Finally, we can obtain the estimate value of state
x(k) based on zlk and corresponding estimate error
covariance matrix

Rk | k) =%, (k| k) = Ex(k) | 2} }, (14)
Pk k)= Py(k|K). (15)

The above process of filtering step by step of the
nonlinear system is demonstrated by Fig. 2.

3.2. Theoretical deduction of algorithm

This section adopts the orthogonal principle to
deduce the new algorithm. The concise steps are
presented here.

1) One step predict estimate value x(k|k—1) and
corresponding predict error covariance matrix
P(k|k—~1) based on x(k—1|k—1) are as follows
respectively

Sk k=1 = flk=1u(k —1),%(k -1k —1)) (16)

Pk k=1)= F(k—Lu(k —1),%(k ~1| k =1)) P(k = 1| k=1)
x FT (k—Lu(k —1),%(k =11k =1)) + O(k - 1),

(17)
F(k=Lu(k—1),%(k -1k -1))
_of (k—Lu(k - 1),x(k - 1)| (18)
Ox lx(k—]):fc(k—l[k—l) .
2) Use z;(k)toupdate Xx,_{k|k)
X, (klk)=x_(k|k)
+K; ()| 2;(6) = by (e, %, (k| ©)) ], (19)
Pk k) =[I-K;()H, (k. % (k| k)]
xB_(k|k), (20)
where
Ki(k) = Py (k | K)H] (k. % (k| K))

<[ H, (k% (k| k)) Py (k| k) 1)

H] (ki k1 0)+ RG]
Oh(k,x(k))

H; (k X;_ 1(k|k)) o

(22)

x(ky=%;_1(klk} .

3) At last, obtain the estimate value x(k|k) of
state x(k) based on the overall information and the
corresponding estimate error covariance P(k|k)

Rk | k) = 2, (k | k)
= &k k=1)+ Y K (k)z, (k) = by (k, 2, (k| )]

i=1

P(k| k)= Py (k| k)

(23)

N X (24)
=TTl = Ky OH oo (b %y (k| PR | =1

i=1

where x(k|k—1)and P(k |k —1) are presented in (16)
and (17) respectively.

4. ANALYSIS ON ALGORITHM

4.1. Simple discussion

The nonlinear centralized data fusion algorithm
always ftransfers all the gathered measurement
information to the central processor, meanwhile
processing them. This algorithm can maintain high
fusion estimate accuracy. But because the dimension
of the matrix in the algorithm increases sharply with
the sensors and measurement dimensions accretion, it
will cause the inversed C.C. involving matrix to
become quite bulky, thereby easily creating a matrix
singular problem.
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The basic idea of the nonlinear distributed fusion
algorithm is that each local sensor pre-processes their
measurement information, and then transfers the local
estimate value to the central processor for fusion. This
algorithm can not only realize parallel compute but
can ease the computational burden of the central
processor as well. However, some problems still
remain as follows:

1) The total C.C. of the distributed fusion algorithm
is made up of the local processor’s and central
processor’s computation complexity.  Although
parallel compute can lighten the computational burden
of the central processor, it just shares part of the tasks
performed by the fusion central processor to the local
processor, so actually the total computational burden
of the fusion algorithm is not reduced.

2) The large amount of inversed computation
contained in the fusion formula manifolds the C.C. of
the central processor.

3) Non-feedback fusion needs to transfer local
predictive and estimative information to the central
processor while feedback fusion should transfer the
local estimative information to the central processor
and the overall estimative result to local processors.
So the communicational expanses of the two
distributed fusion algorithms are large.

4) The need of certain communication time in the
information feedback in the feedback fusion algorithm
causes predict time delay of the local processor.

As above, the current nonlinear centralized and
distributed fusion algorithms can’t achieve the integral
best in fusion estimate accuracy, C.C. and
communicational expanse etc. However, the new
nonlinear algorithm based on filtering step by step
avoids the disadvantages of traditional fusion
algorithms by updating the estimate with the
measurements in turn, and moreover it maintains the
same estimate accuracy with traditional algorithms.

The following is a compare between the proposed
algorithm and traditional centralized and distributed
fusion algorithms from performance indexes including
C.C. (total C.C. and C.C. of central processor),
communicational complexity, time delay of predict
and estimate accuracy, etc.

4.2. Analysis on computational complexity

By analysis, the C.C. involved in the above four
fusion algorithms that are NLCDFA, NLNFFA,
NLFBFA and NLFAFSS in the process of
linearization of nonlinear functions is equal. For the
sake of convenience and conciseness this paper will
not consider this part of the calculation amount in the
promise of the conclusion. As it doesn’t involve data
fusion when N =1, this paper only discusses the
situation when N 22 . The computational complexity
analysis in this chapter is made up of total C.C. and
C.C. of the central processor.

4.2.1 Analysis on total C.C. of algorithm

We must obey the following rules when we are
analyzing the computational complexity:

i) We reduce the C.C. types to addition calculation,
evaluation calculation, multiplication calculation and
division calculation.

ii) One evaluation calculation equals one addition
calculation.

iii) Operate matrix according to the element.

All C.C. statistics in this chapter are in accordance
with the above three rules. For convenience, the C.C.

is analyzed in the situation p; =p . The case of
p; # p can be developed similarly.

Then the analysis results of total C.C. (except the
C.C. of predict value) in the above four algorithms are
shown in Table 1, where

J
M;=N-Y (@2j+2-i)(j—-i), j=npNp. (25)

i=1

Table 2 gives two practical examples of total C.C.
in terms of different parameters. From Table 1 and
Table 2 we can know that the total C.C. among the
above four fusion algorithm obeys the following
relation:

NLFAFSS <NLFBFA<NLNFFA<NLCDFA. (26)

It was noticed that the quantitative analysis doesn’t
include the C.C. of each algorithm’s predict estimate,
for nonlinear predict estimate is obtained by
calculating the corresponding nonlinear function

f (k,u(k),x(k)) . However the calculation in this part

is difficult to achieve quantitatively when we don’t
know the analytic expression of the nonlinear function,
So we analyze the C.C. in this part in a qualitative
way with the result shown in Table 3.

O, means the needed total C.C. The nonlinear
function f(k,u(k),x(k)) is used to compute a

predict estimate value. As demonstrated in Table 2,
the C.C. to compute predict estimate above fusion
algorithms exists in the following relation:

NLFAFSS=NLCDFA=NLFBFA<NLNFFA. (27)

But above C.C is very low comparatively and won’t
influence the relation shown by equation (26). So
from that we can get the relation of total C.C. among
the four fusion algorithms

NLFAFSS <NLFBFA<NLNFFA<NLCDFA. (28)

4.2.2 Analysis of C.C. of central processor

In NLFAFSS and NLCDFA, all the work is finished
by the central processor, while in NLNFFA and
NLFBFA most of the work is finished by the local
processors.

So the central processor only understates the fusion
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Table 1. Computational complexity of four fusion algorithms.

Type .. e s
Algorithms Addition Multiplication Division
(N +2)n* + 3p+1)Nn* N+2)n® +(3Np +1)n’
NLFAFSS ) ( GNp+1) No(p+1)/2
+(Q2Np* +Dn+ NM,, +2Np(p+Dn+NM ,
NLCDFA 3+ GNp+ 3+ GNp+ Np(Np +1)/2
+1)/
+QNP D+ M, +2Np(Np +1yn+ M, PP
(N+2)r® +BNp+3N+4n’ (N +2)° + BNp+ N + 3’
NLFBFA +(2NP? +3N =D + (2N + 2Np+ Dy Np(p+1)/2
p p +<ip +3(N +Dn(n+1)/2
+NM,+3(N+DM, +NM, +(3N + DM,
(3N +2)n’ (3N +2)n’
+(3Np +4N +3)n’ 3Np + 2N + 2)n? Np(p+1)/2
NLNFFA ( P2 ) +(BNp +2N +2)n p(p+1)
+(2Np* +5N)n +2Np(p+Dn+ NM + (2N +Dn(n+1)
+NM , + 202N + )M, +4(N +2)M,

Table 2. Example analysis of C.C.

Table 3. C.C. computing predict estimation of four

algorithms.
@ N=n=p=3 AlgorithmsNLFAFSS| NLCDFA | NLFBFA | NLNFFA
Add Mul Div C.C. 0, 0, 0, |W+hop
NLFAFSS 630 663 18
NLCDFA 1422 1473 45 Table 4. Communicational complexity of four algori-
NLFBFA 981 911 90 thms.
NLNFFA 1222 1122 102 Algorithms Communication Complexity
NLFAFSS ZV (p? +(n+Dp,)
(b) N=10,n=p=5 ,;1
Add Mul Div NLCDFA )y (p? +(n+Dp,)
NLFAFSS 9005 9275 150 =
NLCDFA 1333280 13775 1275 NLFBFA ;(p P+ (n+)p))
NLFBFA 13045 12680 645 NLNFFA i 7+ (s 1)p,)
NLNFFA 16775 14700 780 =

work of the local estimate. Combining the total C.C.
analysis, we can get the relation between the central
processor’s C.C. among the four fusion algorithms:

NLFBFA<NLNFFA<NLFAFSS<NLCDFA. (29)

4.3. Analysis on communicational complexity

The principle of analysis on communicational
complexity is that the translational unit is a numerical
value, and the matrix operates in terms of the element.
The analysis result is shown in Table 4.

Because p; <n(i=1,2,---,N), we can acquire the
relation of communication complexity for the four
fusion algorithms

NLFAFSS=NLCDFA<NLNFFA=NLFBFA. (30)

4.4. Analysis on estimate accuracy
From the point of information quantity the estimate

accuracy of NLFAFSS and NLCDFA should be equal
for both of them in sending the primary measurement
information to the central processor for processing,
which will be proved by the computer simulation. The
literature [4] proves that the estimate effect of
centralized fusion and two kinds of distributed fusion
algorithms are totally equal, providing the
communication from the sensor to local nodes is at
fall rate. Moreover the estimate effects of the
feedback fusion algorithm and non-feedback fusion
algorithm are equal, in which only the local sensor’s
performance in the feedback fusion algorithm is
improved obviously [2]. Consequently, the estimate
accuracy among every algorithm is equal, that is

NLFAFSS=NLCDFA=NLFBFA=NLNFFA. (31)

4.5. Brief summary
Combining the analysis of Section 4.1 to 4.4, Table
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Table 5. Comparative result of every performance index of four algorithms.

Type | C.C. of central Total C.C Time delay | Communication | Accuracy of
Algorithm3 processor s of predict complexity estimation
NLFAFSS Middle Lowest No Low High
NLCDFA Highest Highest No Low High
NLFBFA Lowest Lower l, High High
NLNFFA Lower Middle No High High
5 presents the comparative result about each i
performance index of four nonlinear fusion algorithms. \ . ’,ﬁ,(,'_(}): AFSS
In Table 5, ¢, is the needed time transmitting 0.8 '“ - - - NLCDFA
information from the central processor to the local € A
processor. Because NLFBFA begins the next local goe 1 A
filtering until total estimate information feed backs to - ‘. 'fc-‘;féf‘&,i’\\'-.
the local processors from the central processor, so E 0.4 \\.;” *\\ |
there is the time delay ¢, of predict in local processors. L"l’ ' 27N o By
If ¢, <T, the performance of the feedback fusion > 02 [ “K . i
‘ IR WA Y
algorithm is not affected. But if ¢, >T then the fusion Simuation t'me\é’)/.# AR ¥
B - 1
algorithm will appear under the weight of the % 10 20 20 40 50

measurement information and time delay of the local
estimate, and as such, the application ability of the
feedback fusion algorithm will be affected greatly.
Conversely, the other three fusion algorithms don’t
have such difficulty.

In Table 5 considering these performance indexes
integrally, including the C.C. of the central processor,
total C.C. of each algorithm, time delay of predict,
communication complexity and estimate accuracy etc.,
we can make the conclusion that NLFAFSS is
spurious to the traditional nonlinear centralized fusion
algorithm and nonlinear distributed fusion algorithm.

5. COMPUTER SIMULATIONS

Next we will use the computer simulation to show
the relation of estimate accuracy between the
nonlinear fusion algorithm based on filtering step by
step and the traditional nonlinear centralized fusion
algorithm. And each simulation result is the average
value of 100 Monte Carlo simulations.

5.1. Example 1
Consider the following nonlinear system:

x(k) =0.1x% (k — 1) + 0.9x(k — 1)
+0.02u(k — 1)+ w(k —1),
z,(k) = H,(k)x(k) +v,(k), (i=1,2,3).

(32)
(33)

In the nonlinear system described in (32) and (33),
x(k)e R, O(k)=0.01, H|(k)=0.92, H)(k)=0.95, H3(k)=
0.98, R/(k)=0.015 (i=12,3). The initial state

xg=1 and Ry, =10. Then the simulation result is

Fig. 3. Estimate curves of two algorithms in Example 1.

- - - NLCDFA
0.06 ¢ NLFAFSS

Y-Estimate error(m)
o

& o
8 8

-0.06

: X--Simulation time(s)
10 20 30 40 50

-0.08
0

Fig. 4. Estimate error curves of two algorithms in
Example 1.

Table 6. The absolute error average of two algorithms
in Example 1.

Algorithm NLFAFSS NLCDFA
Absolute error 0.0279 0.0279
average

shown by Figs. 3 and 4. The absolute error averages
of two algorithms are shown by Table 6.

From Fig. 3 to Fig. 4 and Table 5 we can know that
the estimate accuracy aiming at the object state of
NLFAFSS is equal to the estimate accuracy of
NLCDFA.

Combining [2,4] we can easily see that the estimate
accuracy aiming at the object state of NLFAFSS,
NLCDFA, NLFBFA and NLNFFA is equal. So
equation (31) comes into existence.
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6. CONCLUSIONS

This paper presents a nonlinear fusion algorithm
based filtering step by step on the basis of the study
on data fusion methods of nonlinear multisensor
dynamic systems with sampling synchronously, and
puts forward the theoretical deductive process of this
new algorithm and the result of computer simulation.
From Table 1 to Table 5 we can know that the
NLFAFSS algorithm is better than the traditional
nonlinear centralized fusion algorithm and distributed
fusion algorithm integrally under the comprehensive
consideration of the total C.C. of the algorithm, the
C.C. of the central processor, time delay of predict,
communicational complexity and estimate accuracy
etc. The discussions in Section 4.4 and Section 5
demonstrate that NLFAFSS, NLCDFA, NLNFFA and
NLFBFA have the same estimate accuracy aiming at
object state. From the amount of algorithm
information obtained by these algorithms and fusion
frames, the above conclusion of estimate accuracy is
reasonable. But theoretic proof needs further research
concerning whether the estimate accuracy of the
nonlinear fusion algorithm based on filtering step by
step is equal to the estimate accuracy of the nonlinear
centralized fusion algorithm.

In fact the linearization of the nonlinear system will
be a corresponding error, and in the practical
multisensor dynamic we often encounter the question
as to whether the modeling is inaccurate. These
questions are not discussed in this paper. Subsequent
work of the paper is to solve the above questions
using iterative least square method and STF, and the
solving of these questions will further improve the
application ability of these fusion algorithms in a
practical system.
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