Design of Optimal Fuzzy Logic based PI Controller using Multiple Tabu Search Algorithm for Load Frequency Control

  • Pothiya Saravuth (School of Communication, Instrumentation & Control, Sirindhorn International Institute of Technology, Thammasat University) ;
  • Ngamroo Issarachai (School of Communication, Instrumentation & Control, Sirindhorn International Institute of Technology, Thammasat University) ;
  • Runggeratigul Suwan (School of Communication, Instrumentation & Control, Sirindhorn International Institute of Technology, Thammasat University) ;
  • Tantaswadi Prinya (School of Information and Communication Technology, Shinnawatra University)
  • Published : 2006.04.01

Abstract

This paper focuses on a new optimization technique of a fuzzy logic based proportional integral (FLPI) load frequency controller by the multiple tabu search (MTS) algorithm. Conventionally, the membership functions and control rules of fuzzy logic control are obtained by trial and error method or experiences of designers. To overcome this problem, the MTS algorithm is proposed to simultaneously tune proportional integral gains, the membership functions and control rules of a FLPI load frequency controller in order to minimize the frequency deviations of the interconnected power system against load disturbances. The MTS algorithm introduces additional techniques for improvement of the search process such as initialization, adaptive search, multiple searches, crossover and restart process. Simulation results explicitly show that the performance of the proposed FLPI controller is superior to conventional PI and FLPI controllers in terms of overshoot and settling time. Furthermore, the robustness of the proposed FLPI controller under variation of system parameters and load change are higher than that of conventional PI and FLPI controllers.

Keywords

References

  1. N. Jaleeli, L. S. VanSlyck, D. N. Ewart, L. H. Fink, and A. G. Hoffmann, 'Understanding automatic generation control,' IEEE Trans. on Power Systems, vol. 7, no. 3, pp. 1106-1112, 1992 https://doi.org/10.1109/59.207324
  2. C. S. Chang and F. Weihui, 'Area loadfrequency control using fuzzy gain scheduling of PI controllers,' Electr. Power Syst. Res., vol. 42, pp. 145-152, 1997 https://doi.org/10.1016/S0378-7796(96)01199-6
  3. J. Talaq and F. AL-Basri, 'Adaptive fuzzy gain scheduling for load frequency control,' IEEE Trans. on Power Systems, vol. 14, no. 1, pp. 145-150, 1999 https://doi.org/10.1109/59.744505
  4. O. P. Malik, A. Kumar, and G. S. Hope, 'A load frequency control algorithm based on a generalized approach,' IEEE Trans. Power Systems., vol. 3, no. 2, pp. 375-382, 1988 https://doi.org/10.1109/59.192887
  5. N. Saha and S. P. Ghoshal, 'State adaptive optimal generation control of energy systems,' JIEEE, vol. 67, Part EL-2, 1986
  6. A. Kumar, O. P. Malik, and G. S. Hope, 'Variable structure-system control applied to AGC of an interconnected power system,' IEE Proc. 132, Part C, no. 1, pp. 23-29, 1985
  7. Z. M. Ai-Hamouz and Y. L. Abdel-Magid, 'Variable-structure load-frequency controllers for multi area power systems,' Int. J. Electr. Power Energ. Syst., vol. 15, no. 5, pp. 23-29, 1993
  8. C. T. Pan and C. M. Liaw, 'An adaptive control using fuzzy logic,' IEEE Trans. on Power Systems, vol. 4, no. 1, pp. 122-128, 1989 https://doi.org/10.1109/59.32469
  9. C. S. Indulkar and B. Raj, 'Application of fuzzy controller to automatic generation control,' Electric Mach. Power Systems, vol. 23, no. 2, pp. 209-220, 1995 https://doi.org/10.1080/07313569508955618
  10. D. K. Chaturvedi, P. S. Satsangi, and P. K. Kalra, 'Load frequency control: A generalized neural network approach,' Electrical Power and Energy Systems, vol. 21, pp. 405-415, 1999 https://doi.org/10.1016/S0142-0615(99)00010-1
  11. A. Hariri and O. P. Malik, 'Fuzzy logic power system stabilizer based on genetically optimized adaptive network,' Fuzzy Sets Systems, vol. 102, pp. 31-40, 1999 https://doi.org/10.1016/S0165-0114(98)00200-0
  12. C. Ertugrul and I. Kocaarslan, 'A fuzzy gain scheduling PI controller application for an interconnected electrical power system,' Electr. Power Syst. Res., vol. 73, pp. 267-274, 2005 https://doi.org/10.1016/j.epsr.2004.06.013
  13. C. Ertugrul and I. Kocaarslan, 'Load frequency control in two area power systems using fuzzy logic controller,' Energy Conversion and Management, vol. 46, pp. 233-243, 2005 https://doi.org/10.1016/j.enconman.2004.02.022
  14. M. E. El-Hawary, Electric Power Applications of Fuzzy Systems, IEEE Press, New York, 1998
  15. F. Glover, 'Tabu search part I,' ORSA J. Comput., vol. 1, no. 3, pp. 190-206, 1989 https://doi.org/10.1287/ijoc.1.3.190
  16. F. Glover, 'Tabu search part II,' ORSA J. Comput., vol. 2, no. 1, pp. 4-32, 1990 https://doi.org/10.1287/ijoc.2.1.4
  17. J. A. Bland and G. P. Dawson, 'Tabu search and design optimization' Computer-Aided Design, vol. 23, no. 3, pp. 195-201, 1991 https://doi.org/10.1016/0010-4485(91)90089-F
  18. M. Denna, G. Mauri, and A. M. Zanaboni, 'Learning fuzzy rules with tabu search-an application to control,' IEEE Trans. on Fuzzy Systems, vol. 7, pp. 295-318, 1999 https://doi.org/10.1109/91.771086
  19. D. Karaboga, 'Design of fuzzy logic controllers using tabu search algorithm,' Fuzzy Information Processing Society, NAFIPS, 1996 Biennial Conference of the North American, pp. 489-491, 1996
  20. C. C. Lee, 'Fuzzy logic in control systems: Fuzzy logic controller, parts I-II.,' IEEE Trans. Syst. Man Cyber, vol. 20, no. 2, pp. 404-418, 1990 https://doi.org/10.1109/21.52551