Design and Fabrication of the Cryogenically Cooled LNA Module for Radio Telescope Receiver Front-End

전파 망원경 수신기 전단부용 극저온 22 GHz 대역 저잡음 증폭기 모듈 설계 및 제작

  • Oh Hyun-Seok (Dept. of Radio Science & Engineering, Chungnam National University) ;
  • Lee Kyung-Im (LG MC Company Electronics Handset Research Center) ;
  • Yang Seong-Sik (Dept. of Radio Science & Engineering, Chungnam National University) ;
  • Yeom Kyung-Whan (Dept. of Radio Science & Engineering, Chungnam National University) ;
  • Je Do-Heung (Korea Astronomy & Space Science Institute KVN Group) ;
  • Han Seog-Tae (Korea Astronomy & Space Science Institute KVN Group)
  • 오현석 (충남대학교 전파공학과) ;
  • 이경임 (LG전자 MC 단말기 연구소) ;
  • 양승식 (충남대학교 전파공학과) ;
  • 염경환 (충남대학교 전파공학과) ;
  • 제도흥 (한국천문연구원 KVN 사업본부) ;
  • 한석태 (한국천문연구원 KVN 사업본부)
  • Published : 2006.03.01

Abstract

In this paper, the cryogenically cooled low noise amplifier module for radio telescope receiver front-end using pHE-MT MMIC is designed and fabricated. In the selection of MMIC, the MMIC fabricated with the pHEMTS providing successful cryogenic operation are chosen. They are mounted in the housing using the thin film substrate. In the design of the housing, the absorber and the elimination of the gap between the carrier and the housing as well removed the unnecessary oscillations by its structure. The mismatch is improved by ribbon-tuning to provide the best performance at room temperature. The fabricated module shows the gain of $35dB{\pm}1dB$ and the noise figure of $2.37{\sim}2.57dB$ at room temperature over $21.5{\sim}23.5GHz$. In the cryogenic temperature of $15^{\circ}K$ cooled by He gas, the measured gain was above 35 dB and flatness ${\pm}2dB$ and the noise temperatures of $28{\sim}37^{\circ}K$.

본 논문에서는 pHEMT(pseudo-morphic High Electron Mobility Transistor)로 구성된 저잡음 증폭기 MMIC(Monolithic Microwave Integrated Circuit)를 이용하여 극저온에서 동작하는 전파 망원경 수신기 전단부용 22 GH2 대역 저잡음 증폭기 모듈을 설계, 제작하였다. pHEMT MMIC 선정에는, 극저온에서의 동작이 입증된 pHEMT 공정을 사용하여 제작된 저잡음 증폭기 MMIC를 선택하였다. 선정된 2개의 MMIC는 박막(thin film) 세라믹 기판에 장착하여 모듈화 하였다. 모듈화 시 하우징(housing)과 캐리어(carrier) 사이의 간극을 제거하고 전파 흡수체를 사용하여 불필요한 구조에 의한 발진을 제거하였다. 또한 커넥터와 기판 사이의 부정합으로 나타나는 잡음 및 이득의 열화를 리본 조정을 통해 개선시켜 상온에서 최적의 성능을 가지도록 했다. 제작된 증폭기 모듈은 상온에서 $21.5{\sim}23.5GHz$ 대역 내 이득 $35dB{\pm}1dB$, 잡음지수 $2.37{\sim}2.57dB$를 보였다. 제작된 증폭기는 헬륨 냉각기를 이용하여 $15^{\circ}K$로 냉각 후 측정 결과, 대역 내에서 이득 35 dB 이상, 잡음온도 $28{\sim}37^{\circ}K$를 얻었다.

Keywords

References

  1. J. C. Webber, M. W. Pospieszalski, 'Microwave instrumentation for radio astronomy', IEEE Trans. on Microwave Theory and Tech., vol. 50, no. 3, pp. 986-995, 2002 https://doi.org/10.1109/22.989982
  2. M. W. Pospieszalski, S. Weinreb, 'FET's and HEMT's at cryogenic temperatures their properties and use in low-noise amplifiers', Microwave Symposium Digest IEEE MTT-S International, vol. 87, pp. 955-958, Jun. 1987
  3. C. A. Liechti, R. B. Larrick, 'Performance of GaAs MESET's at low temperature', IEEE Trans. on Microwave Theory and Tech., pp. 376-381, 1976
  4. K. H. Gorege Duh et al., '32 GHz cryogenically cooled low noise amplifiers', IEEE Trans on Electron Devices, vol. 38, no. 8, Aug. 1989
  5. 日本通信機株式會社(Nitsuki), MMICを用いた冷却增幅器の開發, 2004
  6. Agilent Technologies, Noise Figure Measurement Accuracy-The Y-factor Method, Application note 57-2(5952-3706E), Feb. 2001
  7. J. D. Gallego, M. W. Pospieszalski, 'Accuracy of noise temperature measurement of cryogenic amplifiers', National Radio Astronomy Observatory Electronics Division Internal Report, Virginia, no. 285, Feb. 1990
  8. T. Kasuga, R. Kawabe, M. Ishiguro, K. Yamada, H. Kurihara, M. Niori and Y. Hirachi, 'Cryogenically cooled K band HEMT receiver for radio astronomical observation', Nobeyama Radio Observatory Report, no. 110
  9. J. E. Fernandez, 'A noise-temperature measurement system using a cryogenic attenuator', TMO Progress Report 42-135, Nov. 1998
  10. Fujitsu, FHX13LG, FHX14LG Super Low Noise HEMT, Edition 1.1, Jul. 1999
  11. Eudyna Devices, FMM5702X 27-32 GHz LNA MMIC, Edition 1.1, Sep. 2004
  12. Eudyna Devices, FMM5703X 24-32 GHz LNA MMIC, Edition 1.1, Sep. 2004
  13. Agilent Technologies, Non-zero Noise Figure after Calibration, Application note 1484, Jan. 2004
  14. Agilent Technologies, Fundamentals of RF and Microwave Noise Figure Measurements(5952-8255E), Mar. 2004
  15. C. T. Stelzezried, 'Microwave thermal noise standards', IEEE Trans. on Microwave Theory and Tech., vol. 16, no. 9, Sep. 1968
  16. VERA, 小笠原局(Ogaswara)#1 K-band Receiver, Jun. 2003