Patterning Zooplankton Dynamics in the Regulated Nakdong River by Means of the Self-Organizing Map

자가조직화 지도 방법을 이용한 조절된 낙동강 내 동물플랑크톤 역동성의 모형화

  • Published : 2006.03.31

Abstract

The aim of this study was to analyze the seasonal patterns of zooplankton community dynamics in the lower Nakdong River (Mulgum, RK; river kilometer; 27 km from the estuarine barrage), with a Self-Organizing Map (SOM) based on weekly sampled data collected over ten years(1994 ${\sim}$ 2003). It is well known that zooplankton groups had important role in the food web of freshwater ecosystems, however, less attention has been paid to this group compared with other community constituents. A non-linear patterning algorithm of the SOM was applied to discover the relationship among river environments and zooplankton community dynamics. Limnological variables (water temperature, dissolved oxygen, pH , Secchi transparency, turbidity, chlorophyll a, discharge, etc.) were taken into account to implement patterning seasonal changes of zooplankton community structures (consisting of rotifers, cladocerans and copepods). The trained SOM model allocated zooplankton on the map plane with limnological parameters. Three zooplankton groups had high similarities to one another in their changing seasonal patterns, Among the limnological variables, water temporature was highly related to the zooplankton community dynamics (especially for cladocerans). The SOM model illustrated the suppression of zooplankton due to the increased river discharge, particularly in summer. Chlorophyll a concentrations were separated from zooplankton data set on the map plane, which would intimate the herbivorous activity of dominant grazers. This study introduces the zooplankton dynamics associated with limnological parameters using a nonlinear method, and the information will be useful for managing the river ecosystem, with respect to the food web interactions.

본 연구는 지난 10여년간의 (1994 ${\sim}$ 2003) 주간격의 자료를 이용한 자가조직화 지도 (SOM) 방법으로 낙동강 하류역 (물금: 낙동강 하구언으로부터 27 km 상류지점)에서 동물플랑크톤 군집 동태에 대한 계절별 유형화 분석을 하는데 목적이 있다. 담수생태계내의 먹이망에서 동물플랑크톤 군집의 역할은 매우 중요하나, 다른 군집 구성원들과의 비교 연구는 다소 미진하게 진행되었다. 비선형 모형 알고리즘인 SOM을 동물플랑크톤 군집 역동성과 강 환경 인자들과의 상관관계 파악을 위하여 적용하였다. 육수학적 환경 인자 (수온, 용존산소, pH, 세키투명도, 탁도, 클로로필 a 농도, 유량 등) 들을 동물플랑크톤 군집 구조(윤충류, 지각류 및 요각류)의 계절적 변화 유형파악을 위하여 사용하였다. 학습된 SOM 모형은 육수학적 환경인자와 연관 지어 지도상에 동물플랑크톤을 배치되었다. 동물플랑크톤의 주요 세 군집들은 계절별 변화 유형에 있어서 높은 유사성을 가지고 있었다. 다양한 육수학적 환경인자 중, 수온은 동물플랑크톤 군집 역동성과 매우 높은 연관관계를 나타내었다(특히, 지각류). SOM 모형은 여름기간 증가된 강 유량에 의해서 동물플랑크톤을 매우 저해하는 요인으로 표현되었다. 클로로필 a 농도는 우점한 초식성 동물플랑크톤 활성도에 의해 지도상에서 구획되었다. 본 연구는 비선형 방법을 이용한 육수학적 환경요인과 동물플랑크톤 역동성을 연관 지어 소개하였으며, 이러한 정보는 먹이망이라는 관점에서 볼 때, 강 생태계 관리에 유용한 정보로 활용될 것으로 사료된다.

Keywords

References

  1. Bayly, I.A.E. 1992. 'The Non-marine Centropagidae (Copepoda: Calanoida) of the World.' Guides to the identification of the microinvertebrates of the continental waters of the world. No. 2. (SPB Academic Publishing: The Hague)
  2. Brosse, S., J.L. Giraudel and S. Lek. 2001. Utilization of non-supervised neural networks and principal component analysis to study fish assemblages. Ecol. Model. 146: 159-166 https://doi.org/10.1016/S0304-3800(01)00303-9
  3. Chon, T.S., Y.S. Park, I.S. Kwak and E.Y. Cha. 2003. Non-linear approach to grouping, dynamics and organizational informatics of benthic macroinvertebrate communities in streams by artificial neural networks, In: Recknagel F (ed) Ecological informatics: understanding ecology by biologically -inspired computation. Springer-Verlag, NY pp. 127-178
  4. Chon, T.S., Y.S. Park, K.H. Moon and E.Y. Cha. 1996. Patternizing communities by using an artificial neural network. Ecol. Model. 90: 69-78 https://doi.org/10.1016/0304-3800(95)00148-4
  5. De seve, M.A. 1993. Diatom bloom in the tidal freshwater zone of a turbid and shallow estuary, Rubert Bay (James Bay, Canada). Hydrobiologia 269- 270: 225-233 https://doi.org/10.1007/BF00028021
  6. Edmondson, W.T. and J.T. Lehman. 1981. The effect of changes in the nutrient income on the condition of Lake Washington. Limnol. Oceanogr. 26: 1-29 https://doi.org/10.4319/lo.1981.26.1.0001
  7. Fielding, A.H. 1999. An introduction to machine learning methods. In: A.H. Fielding (editor). Machine Learning Methods for Ecological Applications. Kluwer Academic Publishers, Massachusetts, pp. 1-35
  8. Gosselain, V., J.P. Descy, L. Viroux, C.J. Justo and A. Hammer. 1998. Grazing by large river zooplankton: a key to summer potamoplankton decline? The case of the Meuse and Moselle rivers in 1994 and 1995. Hydrobiologia 369/370: 199-216 https://doi.org/10.1023/A:1017071909997
  9. Ha, K., H.W. Kim and G.J. Joo. 1998. The phytoplankton succession in the lower part of hypertrophic Nakdong River (Mulgum), South Korea. Hydrobiologia 369/370: 217-227 https://doi.org/10.1023/A:1017067809089
  10. Ha, K., M.H. Jang and G.J. Joo, 2003. Winter Stephanodiscus bloom development in the lower Nakdong River regulated by an estuary dam and tributaries. Hydrobiologia 506: 221-227 https://doi.org/10.1023/B:HYDR.0000008564.64010.4c
  11. Hecht-Nielsen, R. 1990. Neurocomputing. Addison- Wesley, Reading, UK
  12. Hwang, S.J., H.S. Kim, J.K. Shin, J.M. Oh and D.S. Kong. 2004. Grazing effects of a freshwater bivalve (Corbicula leana Prime) and large zooplankton on phytoplankton communities in two Korean lakes. Hydrobiologia 515: 161-179 https://doi.org/10.1023/B:HYDR.0000027327.06471.1e
  13. Jeong, K.S., D.K. Kim, P. Whigham and G.J. Joo. 2003b. Modelling Microcystis aeruginosa bloom dynamics in the Nakdong River by means of evolutionary computationand statistical approach. Ecol. Model. 161: 63-75
  14. Jeong, K.S., F. Recknagel and G.J. Joo. 2003a. Prediction and elucidation of population dynamics of a blue-green algae (Microcystis aeruginosa) and diatom (Stephanodiscus hantzschii) in the Nakdong River-Reservoir System (South Korea) by a recurrent artificial neural network. In: F. Recknagel (Editor). Ecological Informatics. Springer, Berlin, pp. 196-213
  15. Joo, G.J. and K.S. Jeong. 2005. Modelling community changes of cyanobacteria in a flow regulated river (the lower Nakdong River, S. Korea) by means of a Self-Organizing Map (SOM). In: S. Lek, M. Scardi and J.P. Descy (eds.) Modelling Community Structure in Freshwater Ecosystems, Springer
  16. Kim, H.W. and G.J. Joo. 2000. The longitudinal distribution and community dynamics of zooplankton in a regulated large river: a case study of the Nakdong River (Korea). Hydrobiologia 438: 171- 184
  17. Kim, H.W., G.J. Joo and N. Walz. 2001. Zooplankton Dynamics in the hyper-eutrophic Nakdong River system (Korea) regulated by an estuary dam and side channels. Internat. Rev. Hydrobiol. 86: 127- 143 https://doi.org/10.1002/1522-2632(200101)86:1<127::AID-IROH127>3.0.CO;2-F
  18. Kim, H.W., G.J. Joo, K.H. Chang and S.J. Hwang. 2000. Zooplankton community dynamics during the summer Microcystis bloom in the lower part of the Nakdong River, South Korea. Verh. Internat. Verein. Limnol. 27: 1044-1049
  19. Kim, H.W., K-H. Chang, K.-S. Jeong and G.J. Joo. 2003. The spring metazooplankton dynamics in the river-reservoir hybrid system (Nakdong River, Korea): Its role in controlling the phytoplankton biomass. Kor. J. Limnol. 36: 420-426
  20. Kim, H.W., K. Ha and G.J. Joo. 1998. Eutrophication of the lower Nakdong River after the construction of an estuarine dam in 1987. Internat. Rev. Hydrobiol. 83: 65-72 https://doi.org/10.1002/iroh.19980830107
  21. Kim, H.W., S.J. Hwang and G.J. Joo. 1999. Grazing rates of rotifers and their contribution to community grazing in the Nakdong River. Korean J. Ecol. 22: 337-342
  22. Kohonen, T. 1982. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43: 59-69 https://doi.org/10.1007/BF00337288
  23. Koste, W. 1978. Rotatoria. Die Radertiere Mitteleuropas. Ein Bestimmungswerk begrundet von Max Voigt, 2nd edn. (Borntrager: Stuttgart, Vol. 1, Textband 673p., Vol. 2. Textband 234p.)
  24. Lee, S. 1999. Inter-annual variability of nutrient loading in the lower Nakdong River, Mulgum, Korea. Acta Hydrobiol. Sinica 23: 17-23
  25. Leonard, J.A. and H.W. Paerl. 2005. Zooplankton community structure, micro-zooplankton grazing impact, and seston energy content in the St. Johns river system, Florida as influenced by the toxic cyanobacterium Cylindrospermopsis raciborskii. Hydrobiologia 537: 89-97 https://doi.org/10.1007/s10750-004-2483-9
  26. Lin, C.T. and C.S.G. Lee. 1996. Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice Hall, NJ, 797 pp
  27. Millie, D.F., H.J. Carrickb, P.H. Doeringc and K.A. Steidingera. 2004. Intra-annual variability of water quality and phytoplankton in the North Fork of the St. Lucie River Estuary, Florida (USA): a quantitative assessment. Estua. Coast. Shelf Sci. 61: 137-149 https://doi.org/10.1016/j.ecss.2004.04.010
  28. Odum, E.P. 1983. Basic Ecology. Saunders College Publishing, Florida, 613 pp
  29. Park, S.S. and Y.S. Lee. 2002. A water quality modeling study of the Nakdong River, Korea. Ecol. Model. 152: 65-75 https://doi.org/10.1016/S0304-3800(01)00489-6
  30. Park, Y.S., P.F. Verdonschot, T.S. Chon and S. Lek. 2003. Patterning and predicting aquatic macroinvertebrate diversities using artificial neural network. Water Res. 37: 1749-1758 https://doi.org/10.1016/S0043-1354(02)00557-2
  31. Reynolds, C.S. 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge
  32. Shapiro, J. 1990. Current beliefs regarding dominance by blue-greens: the case for the importance of $CO_2$ and pH. Verh. Int. Verein. Limnol. 24: 38- 54
  33. Smirnov, N.N. and B.V. Timms. 1983. A revision of the Australian Cladocera (Crustacea). Records of the Australian Museum Supplement 1: 1-132 https://doi.org/10.3853/j.0812-7387.1.1983.103
  34. Stankovski, V.M. Debeljak, I. Bratko and M. Adamic. 1998 Modelling the population dynamics of red deer (Cervus elaphus L) with regard to forest development. Ecol. Model. 108: 143-153
  35. Tan, Y., L. Huang, Q. Chen and X. Huang. 2004. Seasonal variation in zooplankton composition and grazing impact on phytoplankton standing stock in the Pearl River Estuary, China. Cont. Shelf Res. 24: 1949-1968 https://doi.org/10.1016/j.csr.2004.06.018
  36. Tharme, R.E. 2003. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for river. River Res. Applic. 19: 397-441 https://doi.org/10.1002/rra.736
  37. Thompson, J.M., A.J. Fergson and C.S. Reynolds. 1982. Natural filtration rates of zooplankton in a closed system: The derivation of a community grazing index. J. Plankton Res. 4: 545-560 https://doi.org/10.1093/plankt/4.3.545
  38. Urabe, J. and Y. Watanabe. 1991. Effect of food conditions on the bacterial feeding Daphnia galeata. Hydrobiologia 225: 121-128 https://doi.org/10.1007/BF00028391
  39. van Den Brink, P., J. Roelsma, E. van Nes, M. Scheffer and T. Brock. 2002. Perpest Model, A casebased reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem. 21: 2500-2506 https://doi.org/10.1897/1551-5028(2002)021<2500:PMACBR>2.0.CO;2
  40. Wetzel, R.G. and G.E. Likens. 2000. Limnological Analyses. 3rd edn. Springer-Verlag. New York. 429p
  41. Wilson, H. and F. Recknagel. 2001. Towards a generic artificial neural network model for dynamic predictions of algal abundance in freshwater lakes. Ecol. Model. 146: 69-84 https://doi.org/10.1016/S0304-3800(01)00297-6