참고문헌
- Rees JS. A review of the biomechanics of abfraction. Eur J Prosthodont Restor Dent 8(4): 139-144, 2000
- Lee WC, Eakle WS. Stress-induced cervical lesions: Review of advances on the past 10 years. J Prosthei Dent 75:487-494, 1996 https://doi.org/10.1016/S0022-3913(96)90451-5
- Grippo JO. Abfractions: A new classification of hard tissue lesions of teeth. J Esthet Dent 3(1): 14-19, 1991 https://doi.org/10.1111/j.1708-8240.1991.tb00799.x
- Rees JS, Hammadeh M. Undermining of enamel as a mechanism of abfraction lesion formation: A finite element study. Eur J Oral Sci 112:347-352,2004 https://doi.org/10.1111/j.1600-0722.2004.00143.x
- Lambrechts P, Braem M, Vanherle G. Evaluation of clinical performance for poster composite resins and dentin adhesives. Oper Dent 12:53-78,1987
- Khan F, Young WG, Shahabi S, Daley TJ. Dental cervical lesions associated with occlusal erosion and attrition. Aust Dent J 44:176-186,1999 https://doi.org/10.1111/j.1834-7819.1999.tb00219.x
- Lee WC, Eakle WS. Possible role of the tensile stress in the etiology of cervical erosive lesions of teeth. J Prosthei Dent 52(3):374-380, 1984 https://doi.org/10.1016/0022-3913(84)90448-7
- Burke FJT, Whitehead SA, McCaughey AD. Contemporary concepts in the pathogenesis of the class V non-carious lesion. Dent update 22(1): 28-32, 1995
- Aw TC, Lepe X, Johnson GH, Mancl L. Characteristics of noncariouscervical lesions. J Am Dent Assoc 133: 725-733, 2002 https://doi.org/10.14219/jada.archive.2002.0268
- Selna LG, Shillingdurg HT, Kerr PA. Finite element analysis of dental structures -axisymmetric and plane stress idealizations. J Biomed Mater Res 9:237-252, 1975 https://doi.org/10.1002/jbm.820090212
- Yettram AL, Wright KW, Pickard HM. Finite element stress analysis of the crowns of normal and restored teeth. J Dent Res 55(6): 1004-1011, 1976 https://doi.org/10.1177/00220345760550060201
- Goel VK, Khera SC, Ralston JL, Chang KH. Stresses at the dentinoenamel junction of human teeth-A finite element investigation. J Prosthet Dent 66:451-459, 1991 https://doi.org/10.1016/0022-3913(91)90504-P
- Palamara D, Palamara JEA, Tyas MJ, Messer?HH. Strain patterns in cervical enamel of teeth subjected to occlusal loading. Dent Mater 16:412-419, 2000 https://doi.org/10.1016/S0109-5641(00)00036-1
- Rees JS, Hammadeh M, Jagger DC. Abfraction lesion formation in maxillary incisors ,caninesand premolars: A finite element study. Eut J Oral Sci 111: 149-154, 2003 https://doi.org/10.1034/j.1600-0722.2003.00018.x
- Tanaka M, Naito T, Yokota M, Kohno M. Finite element analysis of the possible mechanism of cervical lesion formation by occlusal force. J Oral Rehabil 30:60-67,2003 https://doi.org/10.1046/j.1365-2842.2003.00959.x
- Geramy A, Sharafoddin F, Abfraction: 3D analysis by means of the finite element method. Quintessence Int 34:526-533,2003
- Katona TR, Winkler MM. Stress analysis of a bulkfilled Class V light-cured composite restoration. J Dent Res 73(8): 1470-1477, 1974
- Lindehe J, Karring T. The anatomy of the periodontium. In Schluger S, Yuodelis R. Page RC, Johnson RH, eds. Textbook of Clinical Periodontology, 2nd edition, Munksgaard, Copenhagen, p19-69, 1989
- Schroeder HE, Page RC. The normal periodontium. In: Schluger S, Yuodelis R, Page RC, Johnson RH, des. Periodontal Diseases, 2nd edition, Lea & Fabiger, Philadelphia, p3-52, 1990
- Rubin C, Krishnamurthy N, Capilouto E, Yi H. Stress analysis of the human tooth using a three-dimensional finite element model. J Dent Res 62:82-86, 1983 https://doi.org/10.1177/00220345830620021701
- Litonjua LA, Sebastiano A, Abani KP, Robert EC. An assessment of stress analyses in the theory of abfraction, Biomed Mater Eng 14:311-321, 2004
- Borcic J, Anic I, Urek MM, Ferreri S. The prevalence of non-carious cervical lesions in permanent dentition. J Oral Rehabil 31: 117-123, 2004 https://doi.org/10.1046/j.0305-182X.2003.01223.x
- Braem M, Lambrechts P, Vanherle G. Stress-induced cervical lesions. J Prostbet Dent 67:718-22, 1992 https://doi.org/10.1016/0022-3913(92)90178-D
- Levitch LC, Bader JD, Shugars DA, Heymann HO. Non-carious cervical lesions. J Dent 22:195-207,1994 https://doi.org/10.1016/0300-5712(94)90107-4
- Pinto MR, Delong R, Ko CC, Sakaguchi RL, Douglas WH. Correlation of noncarious cervical lesion size and occlusal wear in a single adult over a 14-year time span. J Prosthet Dent 84(4) :436-43, 2000 https://doi.org/10.1067/mpr.2000.109477
- Heymann HO, Sturdevant JR, Bayne S, Wilder AD, Sluder TB., Brunson WD. Examining tooth flexure effects on cervical restorations; a two-year clinical study. J Am Dent Assoc 122:41-47, 1991 https://doi.org/10.1016/S0002-8177(91)25015-1
- Widmalm SE, Ericsson SG. Maximal bite force with centric and eccentric load. J Oral Rehabil 9:445-450, 1982 https://doi.org/10.1111/j.1365-2842.1982.tb01034.x
- Gibbs CH, Mahan PE, Lundeen HC, Brehnan K, Walsh EK, Holbrook WB. Occlusal forces during chewing and swallowing as measured by sound transmission. J Prosthet Dent 46:443-449, 1981 https://doi.org/10.1016/0022-3913(81)90455-8
- Lee HE, Lin CL, Wang CH, Cheng CH, Chang CH. Stresses at the cervical lesions of maxillary premolara finite element investigation. J Dent 30:283-290, 2002 https://doi.org/10.1016/S0300-5712(02)00020-9
- De Las Casas EB, Cornacchia TPM, Gouvea PH, Cimini CA JR. Abfraction and anisotropy-Effects of prism orientation on stress distribution. Comput Methods Biomecb Biomed Engin 6(1) :65-73, 2003 https://doi.org/10.1080/1025584021000043357
- Borcic J, Anic I, Smojver I, Catic A, Milstic I, S Pezelj S. 3D finite element model and cervical lesion formation in normal occlusion and in malocclusion. J Oral Rebabil 32:504-510, 2005 https://doi.org/10.1111/j.1365-2842.2005.01455.x
- Kuroe T, Itoh H, Caputo AA, Nakahara H. Potential for load-induced cervical stress concentration as a function of periodontal support. J Esthet Dent 11:215-222, 1999 https://doi.org/10.1111/j.1708-8240.1999.tb00401.x
- Rees JS. The role of cuspal flexure in the development of abfraction lesions: a finite element study. Eur J Oral Sci 106: 1028-1032, 1998 https://doi.org/10.1046/j.0909-8836.1998.eos106608.x
- Rees JS. An investigation into the importance of the periodontal ligament and alveolar bone as supporting structures in finite element studies. J Oral Rehabil 28:425-432, 2001 https://doi.org/10.1046/j.1365-2842.2001.00686.x
- Rees JS. The effect of variation in occlusal loading on the development of abfraction lesions: a finite element study. J Oral Rehabil 29: 188-193, 2002 https://doi.org/10.1046/j.1365-2842.2002.00836.x
- Craig RG, Pet yon FA. Elastic and mechanical properties of human dentin. J Dent Res 37:710-718, 1958 https://doi.org/10.1177/00220345580370041801
- Craig RG, Petyon Fa, Johnson DW. Compressive properties of enamel, dental cements and gold. J Dent Res 46:196-201, 1961
- Bowen R, Rodriguez M. Tensile strength and modulus of elasticity of tooth structure and several restorative materials. J Am Dent Assoc 64:378-387, 1962 https://doi.org/10.14219/jada.archive.1962.0090
- Lehman ML. Tensile strength of human dentin. J Dent Res 46:197-201,1967 https://doi.org/10.1177/00220345670460011001
- Spears IR, Noort RV, Crompton RH, Cardew GE, Howard IC. The effects of enamel anisotropy on the distribution of stress in a tooth. J Dent Res 72(11): 1526-1531, 1993 https://doi.org/10.1177/00220345930720111101
- Grippo JO. Bioengineering seeds of contemplation: A private practitioner's perspective. Dent Mater 12: 198-202, 1996 https://doi.org/10.1016/S0109-5641(96)80022-4
- Kim HJ, Chung MK. The effect of occlusal stress on cervical abfraction. J Korean Acad Prosthodont 34 (2) :299-308, 1996
피인용 문헌
- Stress distribution of endodontically treated maxillary second premolars restored with different methods: Three-dimensional finite element analysis vol.34, pp.1, 2009, https://doi.org/10.5395/JKACD.2009.34.1.069
- Effect of restoration type on the stress distribution of endodontically treated maxillary premolars; Three-dimensional finite element study vol.34, pp.1, 2009, https://doi.org/10.5395/JKACD.2009.34.1.008