DOI QR코드

DOI QR Code

Effects of occlusal load on the cervical stress distribution: A three-dimensional finite element study

교합하중이 치경부 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구

  • Lee, Hyeong-Mo (Department of Conservative dentistry, College of Dentistry, Pusan National University) ;
  • Hur, Bock (Department of Conservative dentistry, College of Dentistry, Pusan National University) ;
  • Kim, Hyeon-Cheol (Department of Conservative dentistry, College of Dentistry, Pusan National University) ;
  • Woo, Sung-Gwan (Department of Mechanical design engineering, College of Engineering, Pusan National Univeristy) ;
  • Kim, Kwang-Hoon (Department of Mechanical design engineering, College of Engineering, Pusan National Univeristy) ;
  • Son, Kwon (Department of Mechanical design engineering, College of Engineering, Pusan National Univeristy) ;
  • Park, Jeong-Kil (Department of Conservative dentistry, College of Dentistry, Pusan National University)
  • 이형모 (부산대학교 치과대학 치과보존학교실) ;
  • 허복 (부산대학교 치과대학 치과보존학교실) ;
  • 김현철 (부산대학교 치과대학 치과보존학교실) ;
  • 우성관 (부산대학교 공과대학 기계설계공학과) ;
  • 김광훈 (부산대학교 공과대학 기계설계공학과) ;
  • 송권 (부산대학교 공과대학 기계설계공학과) ;
  • 박정길 (부산대학교 치과대학 치과보존학교실)
  • Published : 2006.11.30

Abstract

The objective of this study was to investigate the effects of various occlusal loads on the stress distribution of the buccal cervical region of a normal maxillary second premolar, using a three dimensional fnite element analysis (3D FEA). After 3D FE modeling of maxillary second premolar, a static load of 500N of three load cases was applied. Stress analysis was performed using ANSYS (Swanson Analysis Systems, Inc., Houston, USA). The maximum principal stresses and minimum principal stresses were sampled at thirteen nodal points in the buccal cervical enamel for each four horizontal planes, 1.0 mm above CEJ, 0.5 mm above CEJ, CEJ, 0.5 mm under CEJ. The results were as follows 1. The peak stress was seen at the cervical enamel surface of the mesiobuccal line angle area, asymmetrically. 2. The values of compressive stresses were within the range of the failure stress of enamel. But the values of tensile stresses exceeded the range of the failure stress of enamel. 3. The tensile stresses from the perpendicular load at the buccal incline of palatal cusp may be shown to be the primary etiological factors of the NCCLs.

본 연구의 목적은 3차원유한요소분석법을 이용하여 정상 상악 제2소구치의 협측부의 응력분포에 다양한 교합응력이 미치는 영향을 평가하고자 하였다. 상악 제2소구치의 3차원유한요소모델을 형성한 후 형성된 모델에 3종류의 정적인 500N 점하중의 응력조건을 부여하였다. ANSYS 프로그램 (Swanson Analysis Systems, Inc., Houston, USA)으로 최대주응력과 최소주응력을 4개의 수평면 상(CEJ 상방 1 mm, CEJ 상방 0.5 mm, CEJ, CEJ 하방 0.5 mm)에서 분석하여 다음 결과를 얻었다. 1. peak stress가 협측 백악법랑경계를 따라 비대칭적인 모습으로 나타났다. 2. 압축응력 값은 법랑질의 압축파괴응력 범위 내에 있었지만 인장응력은 법랑질의 인장파괴응력 범위를 넘어섰다. 3. 비우식성치경부병소를 발생시키는 주요인은 설측교두의 협측경사면에 가해지는 교합압에 의한 인장응력이라고 보여진다.

Keywords

References

  1. Rees JS. A review of the biomechanics of abfraction. Eur J Prosthodont Restor Dent 8(4): 139-144, 2000
  2. Lee WC, Eakle WS. Stress-induced cervical lesions: Review of advances on the past 10 years. J Prosthei Dent 75:487-494, 1996 https://doi.org/10.1016/S0022-3913(96)90451-5
  3. Grippo JO. Abfractions: A new classification of hard tissue lesions of teeth. J Esthet Dent 3(1): 14-19, 1991 https://doi.org/10.1111/j.1708-8240.1991.tb00799.x
  4. Rees JS, Hammadeh M. Undermining of enamel as a mechanism of abfraction lesion formation: A finite element study. Eur J Oral Sci 112:347-352,2004 https://doi.org/10.1111/j.1600-0722.2004.00143.x
  5. Lambrechts P, Braem M, Vanherle G. Evaluation of clinical performance for poster composite resins and dentin adhesives. Oper Dent 12:53-78,1987
  6. Khan F, Young WG, Shahabi S, Daley TJ. Dental cervical lesions associated with occlusal erosion and attrition. Aust Dent J 44:176-186,1999 https://doi.org/10.1111/j.1834-7819.1999.tb00219.x
  7. Lee WC, Eakle WS. Possible role of the tensile stress in the etiology of cervical erosive lesions of teeth. J Prosthei Dent 52(3):374-380, 1984 https://doi.org/10.1016/0022-3913(84)90448-7
  8. Burke FJT, Whitehead SA, McCaughey AD. Contemporary concepts in the pathogenesis of the class V non-carious lesion. Dent update 22(1): 28-32, 1995
  9. Aw TC, Lepe X, Johnson GH, Mancl L. Characteristics of noncariouscervical lesions. J Am Dent Assoc 133: 725-733, 2002 https://doi.org/10.14219/jada.archive.2002.0268
  10. Selna LG, Shillingdurg HT, Kerr PA. Finite element analysis of dental structures -axisymmetric and plane stress idealizations. J Biomed Mater Res 9:237-252, 1975 https://doi.org/10.1002/jbm.820090212
  11. Yettram AL, Wright KW, Pickard HM. Finite element stress analysis of the crowns of normal and restored teeth. J Dent Res 55(6): 1004-1011, 1976 https://doi.org/10.1177/00220345760550060201
  12. Goel VK, Khera SC, Ralston JL, Chang KH. Stresses at the dentinoenamel junction of human teeth-A finite element investigation. J Prosthet Dent 66:451-459, 1991 https://doi.org/10.1016/0022-3913(91)90504-P
  13. Palamara D, Palamara JEA, Tyas MJ, Messer?HH. Strain patterns in cervical enamel of teeth subjected to occlusal loading. Dent Mater 16:412-419, 2000 https://doi.org/10.1016/S0109-5641(00)00036-1
  14. Rees JS, Hammadeh M, Jagger DC. Abfraction lesion formation in maxillary incisors ,caninesand premolars: A finite element study. Eut J Oral Sci 111: 149-154, 2003 https://doi.org/10.1034/j.1600-0722.2003.00018.x
  15. Tanaka M, Naito T, Yokota M, Kohno M. Finite element analysis of the possible mechanism of cervical lesion formation by occlusal force. J Oral Rehabil 30:60-67,2003 https://doi.org/10.1046/j.1365-2842.2003.00959.x
  16. Geramy A, Sharafoddin F, Abfraction: 3D analysis by means of the finite element method. Quintessence Int 34:526-533,2003
  17. Katona TR, Winkler MM. Stress analysis of a bulkfilled Class V light-cured composite restoration. J Dent Res 73(8): 1470-1477, 1974
  18. Lindehe J, Karring T. The anatomy of the periodontium. In Schluger S, Yuodelis R. Page RC, Johnson RH, eds. Textbook of Clinical Periodontology, 2nd edition, Munksgaard, Copenhagen, p19-69, 1989
  19. Schroeder HE, Page RC. The normal periodontium. In: Schluger S, Yuodelis R, Page RC, Johnson RH, des. Periodontal Diseases, 2nd edition, Lea & Fabiger, Philadelphia, p3-52, 1990
  20. Rubin C, Krishnamurthy N, Capilouto E, Yi H. Stress analysis of the human tooth using a three-dimensional finite element model. J Dent Res 62:82-86, 1983 https://doi.org/10.1177/00220345830620021701
  21. Litonjua LA, Sebastiano A, Abani KP, Robert EC. An assessment of stress analyses in the theory of abfraction, Biomed Mater Eng 14:311-321, 2004
  22. Borcic J, Anic I, Urek MM, Ferreri S. The prevalence of non-carious cervical lesions in permanent dentition. J Oral Rehabil 31: 117-123, 2004 https://doi.org/10.1046/j.0305-182X.2003.01223.x
  23. Braem M, Lambrechts P, Vanherle G. Stress-induced cervical lesions. J Prostbet Dent 67:718-22, 1992 https://doi.org/10.1016/0022-3913(92)90178-D
  24. Levitch LC, Bader JD, Shugars DA, Heymann HO. Non-carious cervical lesions. J Dent 22:195-207,1994 https://doi.org/10.1016/0300-5712(94)90107-4
  25. Pinto MR, Delong R, Ko CC, Sakaguchi RL, Douglas WH. Correlation of noncarious cervical lesion size and occlusal wear in a single adult over a 14-year time span. J Prosthet Dent 84(4) :436-43, 2000 https://doi.org/10.1067/mpr.2000.109477
  26. Heymann HO, Sturdevant JR, Bayne S, Wilder AD, Sluder TB., Brunson WD. Examining tooth flexure effects on cervical restorations; a two-year clinical study. J Am Dent Assoc 122:41-47, 1991 https://doi.org/10.1016/S0002-8177(91)25015-1
  27. Widmalm SE, Ericsson SG. Maximal bite force with centric and eccentric load. J Oral Rehabil 9:445-450, 1982 https://doi.org/10.1111/j.1365-2842.1982.tb01034.x
  28. Gibbs CH, Mahan PE, Lundeen HC, Brehnan K, Walsh EK, Holbrook WB. Occlusal forces during chewing and swallowing as measured by sound transmission. J Prosthet Dent 46:443-449, 1981 https://doi.org/10.1016/0022-3913(81)90455-8
  29. Lee HE, Lin CL, Wang CH, Cheng CH, Chang CH. Stresses at the cervical lesions of maxillary premolara finite element investigation. J Dent 30:283-290, 2002 https://doi.org/10.1016/S0300-5712(02)00020-9
  30. De Las Casas EB, Cornacchia TPM, Gouvea PH, Cimini CA JR. Abfraction and anisotropy-Effects of prism orientation on stress distribution. Comput Methods Biomecb Biomed Engin 6(1) :65-73, 2003 https://doi.org/10.1080/1025584021000043357
  31. Borcic J, Anic I, Smojver I, Catic A, Milstic I, S Pezelj S. 3D finite element model and cervical lesion formation in normal occlusion and in malocclusion. J Oral Rebabil 32:504-510, 2005 https://doi.org/10.1111/j.1365-2842.2005.01455.x
  32. Kuroe T, Itoh H, Caputo AA, Nakahara H. Potential for load-induced cervical stress concentration as a function of periodontal support. J Esthet Dent 11:215-222, 1999 https://doi.org/10.1111/j.1708-8240.1999.tb00401.x
  33. Rees JS. The role of cuspal flexure in the development of abfraction lesions: a finite element study. Eur J Oral Sci 106: 1028-1032, 1998 https://doi.org/10.1046/j.0909-8836.1998.eos106608.x
  34. Rees JS. An investigation into the importance of the periodontal ligament and alveolar bone as supporting structures in finite element studies. J Oral Rehabil 28:425-432, 2001 https://doi.org/10.1046/j.1365-2842.2001.00686.x
  35. Rees JS. The effect of variation in occlusal loading on the development of abfraction lesions: a finite element study. J Oral Rehabil 29: 188-193, 2002 https://doi.org/10.1046/j.1365-2842.2002.00836.x
  36. Craig RG, Pet yon FA. Elastic and mechanical properties of human dentin. J Dent Res 37:710-718, 1958 https://doi.org/10.1177/00220345580370041801
  37. Craig RG, Petyon Fa, Johnson DW. Compressive properties of enamel, dental cements and gold. J Dent Res 46:196-201, 1961
  38. Bowen R, Rodriguez M. Tensile strength and modulus of elasticity of tooth structure and several restorative materials. J Am Dent Assoc 64:378-387, 1962 https://doi.org/10.14219/jada.archive.1962.0090
  39. Lehman ML. Tensile strength of human dentin. J Dent Res 46:197-201,1967 https://doi.org/10.1177/00220345670460011001
  40. Spears IR, Noort RV, Crompton RH, Cardew GE, Howard IC. The effects of enamel anisotropy on the distribution of stress in a tooth. J Dent Res 72(11): 1526-1531, 1993 https://doi.org/10.1177/00220345930720111101
  41. Grippo JO. Bioengineering seeds of contemplation: A private practitioner's perspective. Dent Mater 12: 198-202, 1996 https://doi.org/10.1016/S0109-5641(96)80022-4
  42. Kim HJ, Chung MK. The effect of occlusal stress on cervical abfraction. J Korean Acad Prosthodont 34 (2) :299-308, 1996

Cited by

  1. Stress distribution of endodontically treated maxillary second premolars restored with different methods: Three-dimensional finite element analysis vol.34, pp.1, 2009, https://doi.org/10.5395/JKACD.2009.34.1.069
  2. Effect of restoration type on the stress distribution of endodontically treated maxillary premolars; Three-dimensional finite element study vol.34, pp.1, 2009, https://doi.org/10.5395/JKACD.2009.34.1.008