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Abstract

This study presents results on the numerical simulation of Newtonian and non-Newtonian flow in a channel
obstructed by an asymmetric array of obstacles for clarifying the descriptive ability of current non-New-
tonian constitutive equations. Jones and Walters (1989) have performed the corresponding experiment that
clearly demonstrates the characteristic difference among the flow patterns of the various liquids. In order
to appropriately account for flow properties, the Navier-Stokes, the Carreau viscous and the Leonov equa-
tions are employed for Newtonian, shear thinning and extension hardening liquids, respectively. Making use
of the tensor-logarithmic formulation of the Leonov model in the computational scheme, we have obtained
stable solutions up to relatively high Deborah numbers. The peculiar characteristics of the non-Newtonian
liquids such as shear thinning and extension hardening seem to be properly illustrated by the flow modeling.
In our opinion, the results show the possibility of current constitutive modeling to appropriately describe
non-Newtonian flow phenomena at least qualitatively, even though the model parameters specified for the

current computation do not precisely represent material characteristics.
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1. Introduction

Viscoelastic liquids demonstrate various peculiar flow
behaviors, most of which result from nonlinear charac-
teristics of the liquids such as shear thinning and exten-
sional hardening. The work by Jones and Walters (1989)
clearly illustrates difference in flow phenomena of viscous
and viscoelastic fluids. This paper makes an attempt to
answer the question if current numerical modeling can
appropriately describe these nonlinear viscoelasticity at
least qualitatively.

Distinct non-Newtonian flow behavior occurs almost
always at high Deborah number or at high flow rate. Thus
in order to analyze it, one has to perform successful numer-
ical modeling of this high Deborah number flow, which
has been a formidable task in the field of computational
viscoelastic fluid dynamics. Its difficulty may be expressed
via lack of proper mesh convergence, solution inaccuracy
and violation of positive definiteness of the conformation
tensor (violation of strong ellipticity of partial differential
equations), which ultimately result in degradation of the
whole numerical scheme. Here again we employ in the
finite element formulation the tensor-logarithmic trans-
form, which has been first suggested by Fattal and Kup-
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ferman (2004) and has also been applied in our previous
works (Kwon, 2004; Yoon and Kwon, 2005). It forbids the
violation of positive definiteness of the conformation ten-
sor and therefore removes one probable pathological
behavior of governing equations.

The first finite element implementation of this new for-
malism has been performed by Hulsen (2004) and Hulsen
and coworkers (2005), who have demonstrated dramatic
stabilization of the numerical procedure with the Giesekus
constitutive equation. Kwon (2004) and Yoon and Kwon
(2005) have given numerical results of the flow modeling
in the domain with sharp corners. In comparison with the
conventional method, stable computation has been dem-
onstrated even in this flow domain with sharp corners. In
the papers, it has been concluded that this new method may
work only for constitutive equations proven globally sta-
ble.

In this work, we consider the viscoelastic flows in a
channel obstructed by an asymmetric array of cylindrical
obstacles, which have been experimentally investigated by
Jones and Walters (1989). The results explicitly illustrate
the qualitative difference of flow behaviors among New-
tonian, shear thinning and extension thickening fluids. By
qualitative comparison of the numerical results with the
experiments, we test some popular non-Newtonian con-
stitutive equations and verify the possibility that they can
properly describe these phenomena at least qualitatively.
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2. Equations in 2D planar flow

In order to analyze flow behavior of various incom-
pressible fluids, one first requires the equation of motion
and continuity equation

p(%va-Vv):—prLV«t, V-v=0. )
Here p is the density of the liquid, v the velocity, t the
extra-stress tensor, and p is the pressure. The gravity force
is neglected in the analysis and V is the usual gradient
operator in tensor calculus. When kinematic description of
the extra-stress is given in terms of the specific constitutive
model, the set of governing equations becomes complete.

This study considers three types of fluids such as New-
tonian, shear-thinning viscous and viscoelastic liquids.
First for Newtonian and shear-thinning liquids the stress
tensor is written as

T=12ne, 2

where e = %(Vv+VvT) is the strain rate tensor and 7 is the

viscosity which is constant for the Newtonian liquid. How-
ever the viscosity becomes a function of the strain rate for
non-Newtonian fluid and thus for suitable expression of the
shear-thinning behavior we choose the Carreau model writ-
ten as
pl
n=na+Me-n)(1+09)7] 3)

Here n, and n, are zero-shear viscosity and asymptotic
viscosity at infinite rate of strain, respectively. § = ./2tr(e-e)
designates the intensity of the flow and A and p are numer-
ical fitting parameters. Thus this viscosity model expresses
shear thinning characteristic when p<1 and ng>n,.

In expressing viscoelastic property of the liquid, the
Leonov constitutive equation (Leonov, 1976) is employed,
since it is easy to regulate the degree of extension thick-
ening by proper adjustment of parameters. The differential
viscoelastic constitutive equations derived by Leonov can
be written into the following quite general form:

T=(1 ~S)G(§)nc+2nse, W= 5(;37—_21)[(%)'“_ 1],

ULc—Vlec—c-Veri(é) (c2+1——2_llc~8) =0. 6
dr 20\1, 3

Here ¢ is the elastic Finger strain tensor that describes the
accumulated elastic strain in the Finger measure during flow,
de _ @+V~VC is the total time derivative of ¢, '@—VVT-
dt ot dt

c—c- Vv is the upper convected time derivative, G is the
modulus, 0 is the relaxation time, n = G0 is the total vis-
cosity that corresponds to the zero-shear viscosity and s is
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the retardation parameter that specifies the solvent vis-
cosity contribution. The tensor ¢ reduces to the unit tensor
8 in the rest state and this condition also serves as the ini-
tial condition in the start-up flow situation. In the asymp-
totic limit of 6-—»w where the material exhibits purely
elastic behavior, it becomes the total Finger strain tensor.

I, =trcand [, =tr ¢ are the basic first and second invari-
ants of ¢, respectively, and they coincide in planar flows.
Due to the characteristic of the Leonov model, the third
invariant /; satisfies specific incompressibility condition
such as ;=det ¢ = 1. In addition to the linear viscoelastic
parameters, it contains 2 nonlinear constants m and n (n >
0), which can be determined from simple shear and uniax-
ial extensional flow experiments. They control the strength
of shear thinning and extension hardening of the liquid.
However the value of the parameter m does not have any
effect on the flow characteristics here in 2D situation, since
two ¢ tensor invariants are identical. Thus in this study we
adjust only the parameter » to attain appropriate (planar)
extension hardening characteristic. The total stress tensor is
obtained from the elastic potential # based on the Mur-
naghan’s relation. Since the extra-stress is invariant under
the addition of arbitrary isotropic terms, when one presents
numerical results it may be preferable to use t=(1-5)G

({}) (c—8)+2nse instead in order for the stress to vanish in
2

the rest state.

The essential idea presented by Fattal and Kupferman
(2004) in reformulating the constitutive equations is the
tensor-logarithmic transformation of ¢ as follows:

h=loge. (5

Here the logarithm operates as the isotropic tensor func-
tion, which implies the identical set of principal axes for
both ¢ and h. In the case of the Leonov model, this h
becomes another measure of elastic strain, that is, twice the
Hencky elastic strain. While ¢ becomes 8, h reduces to 0
in the rest state.

In the case of 2D planar flow, the final set of the Leonov
constitutive equations in the h-form has been obtained in
Kwon (2004) as follows:

ohy, 2

ohy o, (
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[1(h17+h”he te h)+h”}‘3v’
" € —¢ ox,

+le

_h
he hy,=0. (6)

Here h=./h3,+h}, is the eigenvalue of h. Actually the total
set of eigenvalues in this 2D flow is 4, —/ and 0. Together
with the equations of continuity and motion, Egs. (6) con-
stitute a complete set to describe isothermal incompressible
planar viscoelastic flow. However due to the form pre-
sented in Eqgs. (6), artificial numerical difficulty may arise.
In addition to the case of rest state, during flow vanishing
of the eigenvalue 4 (it means h = 0) may occur locally, e.g.
along the centerline in the fully developed Poiseuille flow
through a straight pipe. Then the coefficients of &v,/6x; and
h; in Egs. (6) become apparently indeterminate. However
proper asymptotic relation for vanishing # can be obtained
and given in previous papers (Kwon, 2004; Yoon and
Kwon, 2005).

In the notation of the h tensor the incompressibility rela-
tion det ¢ =1 becomes

trh=0. )

In this 2D analysis, h,,=~hy, hy;=0, and thus the vis-
coelastic constitutive equations add only 2 supplementary
unknowns such as k;; and Ay, to the total set of variables.

3. Numerical procedure and boundary conditions

The geometric details of the flow in a channel obstructed
by an asymmetric array of cylindrical obstacles are illus-
trated in Fig. 1. All the arrangement of 4 obstacles coin-
cides with the original experimental setup (Jones and
Walters, 1989). Even though employing the periodic
boundary condition one can easily solve the flow problem
with an infinite number of obstacles, here we consider 4
cylindrical obstacles with traction boundaries at the inlet
and outlet.

All the computational scheme except for the boundary
conditions is identical with the one employed in the pre-
vious studies (Kwon, 2004; Yoon and Kwon, 2005). With
the standard Galerkin formulation adopted as basic com-
putational framework, streamline-upwind/Petrov-Galerkin
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Fig. 2. Partial view of the 2 meshes employed in the compu-
tation. (a) coarse mesh, (b) fine mesh.

(SUPG) method as well as discrete elastic viscous stress
splitting (DEVSS) (Guénette and Fortin, 1995) algorithm
is implemented. The upwinding algorithm developed by
Gupta (1997) has been applied.

2 types of meshes are employed and their partial views
are illustrated in Fig. 2. Corresponding mesh details are
given in Table 1. While the cylindrical obstacle is dis-
cretized with 60 straight lines for the coarse mesh, for
the finer mesh it is composed of 120 short chords. Even
though we have applied 2 types of spatial discretization,
the coarse mesh is used only for mesh convergence test
and all the theoretical considerations herein are pre-
sented on the basis of the results obtained with the finer
mesh.

Linear for pressure and strain rate and quadratic inter-
polations for velocity and h-tensor are applied for spatial
continuation of the variables. In this work, we only con-
sider steady flow of the isothermal incompressible liquid.
In order to mimic dimensionless formulation, we simply

4.5 2H =23 N\
N
21.2 .
. A O L’O O 9 f.'_?W%

'4 200

- . -

Fig. 1. Schematic diagram of the problem domain for the flow in a channel obstructed by an asymmetric array of cylindrical obstacles.
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Table 1. Characteristics of the 2 meshes employed in the computation

Length of the side of No. of No. of No. of No. of
the smallest element elements linear nodes quadratic nodes unknowns
Coarse mesh 0.5 12786 6748 26285 132132
Fine mesh 0.3 28218 14640 57501 288564
assign unit values for G and 0 (Hence th.e zero-shear vis- _QE+%+%= 0 0t,,_ 00,
cosity 1 = GO also becomes unit) and adjust the Deborah ox ox Oy oy Ox
number (or the Reynolds number) by the variation of the P ,
average flow rate (actually by varying the traction force at —a}l":— a;‘”zconst. ~—~ -~ on the inlet boundary,
channel

the inlet of the channel). On the other hand, only one set of
parameters are employed for the computation of the Car-
reau viscous model. Their values are o =1,1,,=0.1, A=1
and p=0.1.

In order to solve the large nonlinear system of equations
introduced, the Newton iteration is used in linearizing the
system. As an estimation measure to determine the solution
convergence, the L,, norm scaled with the maximum value
in the computational domain is employed. Hence when the
variation of each nodal variable in the Newton iteration
does not exceed 107 of its value in the previous iteration,
the algorithm concludes that the converged solution is
attained. For the viscoelastic variables, we examine the rel-
ative error in terms of the eigenvalue of the c-tensor. We
have found that this convergence criterion imposes less
stringent condition on the computational procedure, and it
seems quite practical and appropriate since we mainly
observe the results in terms of physically meaningful c-ten-
sor or stress rather than h.

Here we adopt the traction boundary condition. First all
the components of traction vanish at the outlet. On the
other hand, in the flow direction (x-axis) at the inlet, the
constant finite traction force is applied. In the transverse
direction (y-axis), we initially set the boundary free from
the traction force. However it is found that in the time-
dependent flow computation this boundary condition has
introduced some incompatibility, the origin of which is not
clear yet. Thus we employ slight modification for the trac-
tion in y-direction as follows:

t,=const., t,= . L (8)
© LenamneaHo) Hy

where the total stress tensor 6 = —pd + T becomes the trac-
tion vector ¢ on the inlet boundary and ¢ is its i-th com-
ponent. 2H, is the height of the channel and L,y is the
length of the virtually straight channel, the value of which
is specified empirically to guarantee stable computations
and set to be 300 x H, in this computation. This simple
modification seems to endow the numerical scheme of
transient flow simulation with stability. #, in Eqgs. (8) has
been derived from the following estimation of the equation
of motion in the flow direction:
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which results i #, in Eqs. (8).

Certainly one may employ the traction boundary con-
dition obtained from the analytic solution for the fully
developed flow along the straight pipe. However it is appli-
cable only for 2D or axisymmetric case, since in the gen-
eral 3D fully developed flow the analytic solution for the
channel with an arbitrary cross-section is not known.
Hence in the current flow analysis we implement the sim-
ple condition (8) other than the fully developed flow con-
ditions.

4. Results and discussion

This study mainly focuses on the ability of the available
constitutive equations for non-Newtonian fluids in describ-
ing complex flow phenomena employing computational
technique. However before discussing these results, it is
worthwhile to mention the accuracy and the stability char-
acteristic of the current numerical scheme augmented by
the tensor-logarithmic transformation (5).

Although the detailed result is not presented in this paper,
we have found proper characteristics of mesh convergence
in the previous works (Kwon, 2004; Yoon and Kwon,
2005) as well as in this study. Since we have adopted not
the boundary condition with velocity profile specified but
the traction boundaries both at the inlet and outlet, it is
probable that the flow rate at the inlet differs from that at
the outlet if the incompressibility condition is not appro-
priately accounted in the computation. However the com-
putational results have shown that the flow rates at the inlet
and outlet coincide up to the 13™ significant digit.

We define the Deborah number as

_ Vme
]

D
"D

)
where v, is the average flow rate at the channel inlet or
outlet and D= 2.5 is the width of the narrow gap between
the cylindrical obstacle and the channel wall. As the New-
tonian viscous term becomes relatively large, the stability
of the system is dramatically improved. When we specify
s=0.5 with n=0.1 and p=0 for the Leonov model (4),
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Fig. 3. Steady flow curves for the Leonov model with s=0.1.
(a) shear rate vs. shear viscosity in simple shear and (b)
extensional strain rate vs. extensional viscosity in uniaxial
extension.

we have obtained the stable solution up to De=1.2 x 10’
(tJG=4.7 x 10%) and stopped the computation due to no
further interest. This agrees with results obtained in the
previous works (Hulsen, 2004; Hulsen ef al., 2005). How-
ever when s becomes close to 0, the limit Deborah number,
over which stable computation cannot be carried out,
becomes finite in the range of 4.5~20.

Before we investigate the results, in Fig. 3 the simple
flow properties are illustrated. When #=0.1 for the Leonov
model, the simple shear flow characteristic is almost iden-
tical with that of the Carreau model (Fig. 3a). For n=0.1
and 1, shear thinning behavior is quite distinctly mani-
fested. However in the case of n =2 it is weakly presented
and even shear thickening behavior is observed when
n = 3. Fig. 3(b) depicts extension hardening behavior of the
Leonov model for all values of #. The extension hardening
moderately appears for n = 0.1, while it is strongly expressed
when n > 1. Here we have controlled the level of extension
thickening by the adjustment of », which also alters the
degree of shear thinning. However from the experiments it
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Fig. 4. Total flow rates as functions of the total traction force
applied at the inlet boundary for the Newtonian, Carreau
and Leonov model fluids (s=0.1, p=0.001).

is quite often observed that extension thickening is appar-
ently independent of the shear thinning. For the Leonov
model, one may change the extent of uniaxial extensional
thickening without varying shear thinning behavior by reg-
ulating the value of m in Eqgs. (4) with n fixed, but m does
not have any effect on the planar extension characteristics
which plays an important role in this current 2D flow mod-
eling.

The dependence of the total flow rate in the channel upon
the applied force (f, x 2H,) at the inlet is shown in Fig. 4
for all types of the liquid. Since the Deborah number can-
not be defined for the Newtonian and Carreau viscous lig-
uids, the total flow rate Q is chosen as the output variable.
As is expected, the flow rate is monotonically increasing
with the traction force for all types. For the Carreau vis-
cous and the Leonov viscoelastic liquids with n=0.1, 1
and 2, the flow rate is higher than that of the Newtonian
liquid, which seems to result from their shear thinning
behavior. On the other hand the flow rate for the Leonov
model with »=3 becomes lower than that of the New-
tonian case due to shear thickening as well as severe exten-
sion thickening. One can also notice that the flow rate for
n=20.1 is somewhat lower than that for the Carreau model,
which coincides with its shear thinning viscosity slightly
lower than that of the Carreau model.

In Fig. 5, streamlines computed for various liquids are
illustrated, where the parameters are chosen to approxi-
mately describe the flow behavior depicted in Fig. 25 (fig-
ures of the lower Reynolds numbers) of the paper (Jones
and Walters, 1989) and to roughly match the Reynolds
numbers there. However since we have not determined the
model parameters from the basic experimental data, their
values do not have rigorous meaning. The arrow in each
figure represents relative amount of liquid that goes
through wide gaps. In the case of the shear thinning liquid
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Fig. 5. Streamlines of the flow along the channel obstructed by cylindrical obstacles for (a) Newtonian (p=0.01, 0 =0.1165), (b) Car-
reau (p=0.01, 0=823.8), (c) viscoelastic (»=0.1, s=0.001, p=0.01, Q=185.2) and (d) viscoelastic (n=2, s=0.001,

p=0.01, Q=374.5) liquids.

(Fig. 5b), the arrow is much shorter than that of the New-
tonian liquid and therefore relatively large amount of liquid
flows through narrow gaps. This explains significant shear
thinning in the flow through the narrow gaps for the Car-
reau viscous fluid, which results in lowering the viscosity
and thus raises the flow rate along the gaps. The extension
thickening liquid exhibits quite distinct behavior (Fig. 5d)
that the flow rate through the narrow gap becomes low and
accordingly the arrow grows longer. This originates from
the high extensional viscosity existent in the narrow gap
where high extensional flow exists. The flow behavior of
the shear thinning viscoelastic liquid (Fig. Sc) is quite sim-
ilar to that of the Newtonian liquid. In this case we think
that both shear thinning and extension hardening com-
pensate for the mutually opposite effects and therefore the

appearance of the streamlines becomes analogous to the
Newtonian one.

The results of the Newtonian (Fig. 5a), the shear thinning
viscous (Fig. 5b) and the extension hardening (Fig. 5d) lig-
uids roughly coincide with those of the Newtonian, the
xanthan-gum and polyacrylamide solutions in Fig. 25 of
the paper (Jones and Walters, 1989), respectively. In our
opinion, in spite of the crude comparison performed in the
current study this validates the possibility of current con-
stitutive modeling to appropriately describe non-Newto-
nian flow phenomena at least qualitatively. For more
accurate conclusion, rigorous computational comparison
based on experimental verification of model parameters is
certainly required.

Fig. 6 presents streamlines for the Carreau viscous fluid

Fig. 6. Streamlines of the flow along the channel obstructed by cylindrical obstacles for Carreau viscous liquid (p =0.01, 0 =2337).
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at higher flow rate that also approximately represent those
of the xanthan-gum solution at higher Reynolds number in
Fig. 25 of the paper (Jones and Walters, 1989). They dem-
onstrate salient vortices behind the cylinders, which seem
to be mainly caused by the inertia force combined with
shear thinning.

5. Conclusions

In this study, we have made an attempt to qualitatively
describe with available constitutive models complex non-
Newtonian phenomena observed in the flow along the
channel obstructed by cylindrical obstacles by Jones and
Walters (1989). The non-Newtonian response in this flow
type is found to be quite distinct from the Newtonian flow
behavior in the theoretical as well as experimental aspect.
The shear thinning viscous and the extension hardening
characteristics exhibited in experiments are quite accu-
rately captured by the computational modeling of the Car-
reau viscous and the Leonov viscoelastic constitutive
equations. In our opinion, in spite of the crude comparison
performed in the current study the results show the pos-
sibility of current constitutive modeling to appropriately
describe non-Newtonian flow phenomena at least quali-
tatively. For definite estimation of the ability of the con-
stitutive modeling in non-Newtonian fluid mechanics,
rigorous computational comparison with model parameters
based on experimental verification is certainly essential.
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