References
- Breiman, L. (1996). Bagging predictors. Machine Learning, Vol. 24, 123-140
- Breiman, L. (1998). Arcing classifiers (with discussion). Annals of Statistics, Vol. 26, 801-849 https://doi.org/10.1214/aos/1024691079
- Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regression Trees, Chapman and Hall, New York
- Dietterich, T.G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning, Vol. 40, 139-157 https://doi.org/10.1023/A:1007607513941
- Fan, J, and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, Vol. 96, 1348-1360 https://doi.org/10.1198/016214501753382273
- Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of online learning and application to boosting. Journal of Computer and System Science, Vol. 55, 119-139 https://doi.org/10.1006/jcss.1997.1504
- Friedman, J. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, Vol. 29, 1189-1232
- Hastie, T., Tibshirani, R. and Friedman, J.H. (2001). Elements of Statistical Learning. Springer-Verlag, New York
- Heskes, T. (1997). Balancing between bagging and bumping, In Mozer, M., Jordan, M., and Petsche, T. editors. Advances in Neural Information Processing, Morgan Kaufmann
- Lazarevic, A. and Obradovic, Z. (2001). The effective pruning of neural network ensembles. Proceedings of 2001 IEEE/INNS International Joint Conierence on Neural Networks, 796-801
- Margineantu, D.D. and Dietterich, T.G. (1997). Pruning adaptive boosting. Proceedings of the 14th International Conference in Machine Learning, 211-218
- Mason, L., Baxter, J., Bartlett, P.L. and Frean, M. (2000). Functional gradient techniques for combining hypotheses, In A. J. Smola, P. L. Bartlett, B. Scholkopf and D. Schuurmans, editors. Advances in Large Margin Classifiers, Cambridge: MIT press
- Merz, C.J. and Murphy, P.M. (1998). DCI Repository of Machine Learning database. Available at http://www.ics.uci.edu/-mlearn/MLRepository.html
- Quinlan, J.R. (1993). C4.5 : Programs for Machine Learning, Morgan Kaufmann, San Maeto, CA
- Quinlan, J.R. (1996). Bagging, boosting, and C4.5. Proceeding of 13th National Conference on Artificial Intelligence, 725-730
- Rosset, S., Zhu, J. and Hastie, T. (2004). Boosting as a regularized path to a maximum margin classifier. Journal of Machine Learning Research, Vol. 5, 941-973
- Tamon, C. and Xiang, J. (2000). On the boosting pruning problem. Proceedings of 11th European Conference on Machine Learning, Lecture Notes in Computer Science, Vol. 1810, 404-412
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of Royal Statistical Society B, Vol. 58, 267-288
- Tibshirani, R. and Knight, K. (1999). Model selection and inference by bootstrap 'bumping'. Journal of Computational and Graphical Statistics, Vol. 8, 671-686 https://doi.org/10.2307/1390820