References
- Abramson, N. (1963). Information Theory and Coding, Mcgraw Hill, New York
- Bishop, Y.M.M., Fienberg, S.E., and Holland, P.W. (1975). Discrete Multivariate Analysis, Cambridge, Massachusetts: MIT Press
- Brillinger, R. (2004). Some data analyses using mutual information, Brazilian Journal of Probability and Statistics, Vol. 18, 163-183
- Brillinger, R and Guha A. (2006). Mutual Information in the Frequency Domain, Journal of Statistical Planning and Inference, To appear
- Cover, T. and Thomas, J. (1991). Elements of Information Theory, John Wiley and Sons, New York
- DeGroot, M.H. (1962). Uncertainty, information and sequential experiments. Annals of Mathematical Statistics, Vol. 33, 404-419 https://doi.org/10.1214/aoms/1177704567
- Fraser, A. and Swinney, H. (1986). Independent coordinates for strange attractors from mutual information. Physical Review, Vol. 33(2), 1134-1140 https://doi.org/10.1103/PhysRevA.33.1134
- Gallager, R.G. (1968). Information Theory and Reliable Communication, John Wiley, New York
- Gelfand, I.M. and Yaglom, A.M. (1959). Calculation of the amount of information about a random function contained in another such function. American Mathematical Society, Translations, Ser
- Palus, M. (1993). Identifying and quantifying chaos by using information theoretic functions in time series prediction: Forecasting the Future and Understanding the Past. SantaFe Institute Studies in the Sciences of Complexity, Vol. 15, 387-413
- Palus, M. and Pivka, D. (1995). Estimating predictability: Redundancy and surrogate data method. Neural Network World, Vol. 4, 537-552
- Prichard, D. and Theiler, J (1995). Generating surrogate data for time series with several simultaneously measured variables. Physical Review. Vol. 73, 951-954
- Shannon, C.E, (1948). A mathematical theory of communication. The Bell System Technical Journal, Vol. 27, 379-423 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- Wienholt, W. and Sendhoff, B. (1996), How to determine the redundancy of noisy chaotic time series. International Journal of Bifurcation and Chaos. Vol. 6. 101-117 https://doi.org/10.1142/S0218127496001879