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ON STABILITY OF THE ORTHOGONALLY CUBIC
TYPE FUNCTIONAL EQUATION

Ick-Soon Chang*

Abstract. In this article, we establish the stability of the orthog-
onally cubic type functional equation 2f(x + 2y) + 2f(x − 2y) +
2f(2x) + 7[f(x) + f(−x)] = 4f(x) + 8[f(x + y) + f(x− y)], x⊥y in
which ⊥ is the orthogonality in the sense in the Rätz.

1. Introduction

In 1940, S. M. Ulam [11] proposed the following question concerning
the stability of group homomorphisms: Under what condtion does there
is an additive mapping near an approximately additive mapping between
a group and a metric group?

In next year, D. H. Hyers [5] answers the problem of Ulam under the
assumption that the groups are Banach spaces. A generalized version
of the theorem of Hyers for approximately linear mappings was given
by Th. M. Rassias [8]. Since then, the stability problems of various
functional equation have been extensively investigated by a number of
authors.

The cubic function f(x) = ax3 satisfies the functional equation

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x).(1)

Hence, throughout this paper, we promise that the equation (1) is called
a cubic functional equation and every solution of the equation (1) is
said to be a cubic function. The functional equation (1) was solved by
Jun and Kim [6]. Moreover, they investigated the Hyers-Ulam-Rassias
stability for the functional equation (1).
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Now we introduced the cubic type functional equation as follows:

2f(x + 2y) + 2f(x− 2y) + 2f(2x) + 7[f(x) + f(−x)](2)
= 4f(x) + 8[f(x + y) + f(x− y)].

It is easy to see that the function f(x) = ax3 + b is a solution of the
functional equation (2). The main goal of this note is to offer the stability
of the orthogonally cubic type functional equation (2) for all x, y with
x⊥y, where ⊥ is the orthogonality in the sense of Rätz.

2. Stability of Eq. (2)

Let us recall the orthogonality in the sense of J. Rätz [9]; Suppose
that X is a real vector space with dim X ≥ 2 and ⊥ is a binary relation
on X with the following properties:

(O1) totality of ⊥ for zero: x⊥0, 0⊥x for all x ∈ X;
(O2) independence: if x ∈ X − {0}, x⊥y, then x, y are linearly inde-

pendent;
(O3) homogeneity: if x ∈ X, x⊥y, then αx⊥βy for all α, β ∈ R;
(O4) the Thalesian property: if P is a 2-dimensional subspace of X, x ∈

P and λ ∈ R+, then there exists y0 ∈ P such that x⊥y0 and
x + y0⊥λx− y0.

The pair (X,⊥) is called an orthogonality space. By an orthogonality
normed space we mean an orthogonality space having a normed struc-
ture.

Definition 2.1. Let X and Y be an orthogonality and a real vector
space. A mapping f : X → Y is said to orthogonally cubic if it satisfies
the so-called orthogonally cubic functional equation (1) for all x, y ∈ X
with x⊥y.

Lemma 2.1. Let X and Y be an orthogonality and a real vector
space. If a function f : X → Y satisfies the functional equation (2)
for all x ∈ X with x⊥y, if and only if C is orthogonally cubic, where
C : X → Y is a function defined by C(x) = f(x)− f(0) for all x ∈ X.

Proof. (Necessity.) From the assumption, it follows that

C(x + 2y) + C(x− 2y) + C(2x) +
7[C(x) + C(−x)]

2
(3)

= 2C(x) + 4[C(x + y) + C(x− y)].
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for all x, y ∈ X with x⊥y. In particular, C(0) = 0. Observe that x⊥0
for all x ∈ X. Putting x = 0 in (3), we arrive at

C(2y) + C(−2y) = 4[C(y) + C(−y)].(4)

Letting y = 0 in (3) gives the equation

C(2x) = 8C(x)− 7[C(x) + C(−x)]
2

.(5)

Let us replace x by −x in (5) and then we get

C(−2x) = 8C(−x)− 7[C(x) + C(−x)]
2

.(6)

By adding (5) and (6), we find that

C(2x) + C(−2x) = C(x) + C(−x)

and by comparing with (4), C(−x) = −C(x). Therefore (3) now becomes

C(x + 2y) + C(x− 2y) + C(2x) = 2C(x) +(7)
4[C(x + y) + C(x− y)].

for all x, y ∈ X with x⊥y. Setting y = 0 in (7) leads to the identity
C(2x) = 8C(x). If y⊥x, then by (O3) y⊥2x. By replacing x by 2x in
(7), then we see that C is orthogonally cubic.

(Sufficiency.) Suppose that C is orthogonally cubic, i.e.,

C(2x + y) + C(2x− y) = 2C(x + y) + 2C(x− y) + 12C(x)(8)

for all x, y ∈ X with x⊥y. Note that that x⊥0 for all x ∈ X. If we
take x = y = 0 in (8), then it is clear that C(0) = 0. Setting x = 0 in
(8) yields to C(−y) = −C(y) and letting y = 0 in (8), we obtain that
C(2x) = 8C(x). If x⊥y, then by (O3) x⊥2y. Replacing y by 2y in (8),
we have

C(x + 2y) + C(x− 2y) + C(2x) = 2C(x) + 4[C(x + y) + C(x− y)]

Since C is an odd function, (3) holds for all x, y ∈ X with x⊥y. So we
see that a function f satisfies the functional equation (2) for all x, y ∈ X
with x⊥y. The proof of Lemma is complete.

From now on, let X be an orthogonality normed space and Y be a
Banach space. Given a mapping f : X → Y , we set

Df(x, y) := 2f(x + 2y) + 2f(x− 2y) + 2f(2x) + 7[f(x) + f(−x)]
−4f(x)− 8[f(x + y) + f(x− y)].
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Theorem 2.2. Suppose that f : X → Y is a mapping for which there

exists a function φ : X2 → [0,∞) such that
∑∞

i=0
φ(2ix,2iy)

8i converges and

‖Df(x, y)‖ ≤ δ + φ(x, y)(9)

for all x, y ∈ X with x⊥y, where δ ≥ 0. Then there exists a unique
orthogonally cubic function C : X → Y satisfying the inequality

‖f(x)− C(x)‖ ≤ 1
8

[ ∞∑

i=0

1
8i

(9δ

4
+

13φ(2ix, 0)
12

(10)

+
7[φ(−2ix, 0) + φ(0, 2ix)]

12

)]
+ ‖f(0)‖

for all x ∈ X.

Proof. Let F be a function on X defined by F (x) = f(x) − f(0) for
all x ∈ X. Then F (0) = 0. Note that x⊥0 for all x ∈ X. Substitution of
x = 0 in (9) yields

‖F (2y) + F (−2y)− 4[F (y) + F (−y)]‖ ≤ δ + φ(0, y)
2

.(11)

Next, we let y = 0 in (9) to obtain
∥∥∥F (2x) +

7[F (x) + F (−x)]
2

− 8F (x)
∥∥∥ ≤ δ + φ(x, 0)

2
.(12)

Interchanging x with −x in (12), we get
∥∥∥F (−2x) +

7[F (x) + F (−x)]
2

− 8F (−x)
∥∥∥ ≤ δ + φ(−x, 0)

2
.(13)

It follows from (12) and (13) that

‖F (2x) + F (−2x)− [F (x) + F (−x)]‖ ≤ δ(14)

+
φ(x, 0) + φ(−x, 0)

2
.

Combining (11) and (14), we see that

‖F (x) + F (−x)‖ ≤ δ

2
+

φ(x, 0) + φ(−x, 0) + φ(0, x)
6

.(15)

Thus, using (12) and (15), we find that
∥∥∥F (x)− F (2x)

8

∥∥∥ ≤ 1
8

[9δ

4
+

13φ(x, 0)
12

(16)

+
7[φ(−x, 0) + φ(0, x)]

12

]
.
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By replacing x by 2x in (16) and dividing 8 and summing the resulting
inequality with (16), then we get

∥∥∥F (x)− F (22x)
82

∥∥∥ ≤ 1
8

[9δ

4
+

13φ(x, 0)
12

+
7[φ(−x, 0) + φ(0, x)]

12

]
(17)

+
1
82

[9δ

4
+

13φ(2x, 0)
12

+
7[φ(−2x, 0) + φ(0, 2x)]

12

]

An induction implies that

∥∥∥F (x)− F (2nx)
8n

∥∥∥ ≤ 1
8

n−1∑

i=0

1
8i

[9δ

4
+

13φ(2ix, 0)
12

(18)

+
7[φ(−2ix, 0) + φ(0, 2ix)]

12

]
.

In order to prove convergence of the sequence {F (2nx)
8n }, we divide

inequality (18) by 8m and also replace x by 2mx to find that for n >
m > 0,

∥∥∥F (2mx)
8m

− F (2n2mx)
8n+m

∥∥∥ ≤ 1
8m+1

n−1∑

i=0

1
8i

[9δ

4
+

13φ(2m+ix, 0)
12

(19)

+
7[φ(−2m+ix, 0) + φ(0, 2m+ix)]

12

]
.

Sine the right-hand side of the inequality (19) tends to 0 as m → ∞,

{F (2nx)
8n } is Cauchy sequence. Therefore, we may define a function C :

X → Y by C(x) := limn→∞
F (2nx)

8n for all x ∈ X. By letting n → ∞ in
(18), we arrive at the formula (10).

Now we show that C satisfies the functional equation (2) for all x, y ∈
X with x⊥y: If x⊥y, then by (O3) 2nx⊥2ny. Let us replace x and y by
2nx and 2ny in (9) and divide by 8n. Then it follows that

DC(x, y) = lim
n→∞

‖DF (2nx, 2ny)‖
8n

≤ lim
n→∞

δ + φ(2nx, 2ny)
8n

= 0.

Hence we obtain the desired result. Since C(0) = 0, the lemma 2.1
implies that C is an orthogonally cubic.

It only remains to claim that C is unique: Let us assume that there
exists an orthogonally cubic function T which satisfies (2) and the in-
equality (10). It is clear that C(2nx) = 8nC(x) and T (2nx) = 8nT (x)
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for all x ∈ X and n ∈ N. Hence it follows from (10) that

‖C(x)− T (x)‖ =
‖C(2nx)− T (2nx)‖

8n

≤ 1
8n

[
‖C(2nx)− f(2nx)‖+ ‖f(2nx)− T (2nx)‖

]

≤ 1
8n

{1
4

[ ∞∑

i=0

1
8i

(9δ

4
+

13φ(2ix, 0)
12

+
7[φ(−2ix, 0) + φ(0, 2ix)]

12

)]

+2‖f(0)‖
}

.

By letting n → ∞, then we have C(x) = T (x) for all x ∈ X, which
completes the proof of the theorem.

Corollary 2.3. Let p, q, δ, ε1 and ε2 be nonnegative real numbers
with p < 3 and q < 3. Suppose that f : X → Y is a mapping such that

‖Df(x, y)‖ ≤ δ + ε1‖x‖p + ε2‖y‖q

for all x, y ∈ X with x⊥y. Then there exists a unique orthogonally cubic
function C : X → Y satisfying the inequality

‖f(x)− C(x)‖ ≤ 9δ

28
+

1
8− 2p

[5
3
ε1‖x‖p +

7
12

ε2‖x‖q
]

for all x ∈ X.

Proof. Considering φ(x, y) = ε1‖x‖p + ε2‖y‖q in the theorem 2.2, we
arrive at the conclusion of the corollary.
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