# ON EQUIVALENT NORMS TO BLOCH NORM IN ℂn

• Choi, Ki Seong (Department of Information Security Konyang university)
For $f{\in}L^2(B,d{\nu})$, ${\parallel}f{\parallel}_{BMO}=\widetilde{{\mid}f{\mid}^2}(z)-{\mid}{\tilde{f}}(z){\mid}^2$. For f continuous on B, ${\parallel}f{\parallel}_{BO}=sup\{w(f)(z):z{\in}B\}$ where $w(f)(z)=sup\{{\mid}f(z)-f(w){\mid}:{\beta}(z,w){\leq}1\}$. In this paper, we will show that if $f{\in}BMO$, then ${\parallel}f{\parallel}_{BO}{\leq}M{\parallel}f{\parallel}_{BMO}$. We will also show that if $f{\in}BO$, then ${\parallel}f{\parallel}_{BMO}{\leq}M{\parallel}f{\parallel}_{BO}^2$. A homomorphic function $f:B{\rightarrow}{\mathbb{C}}$ is called a Bloch function ($f{\in}{\mathcal{B}}$) if ${\parallel}f{\parallel}_{\mathcal{B}}=sup_{z{\in}B}\;Qf(z)$<${\infty}$. In this paper, we will show that if $f{\in}{\mathcal{B}}$, then ${\parallel}f{\parallel}_{BO}{\leq}{\parallel}f{\parallel}_{\mathcal{B}}$. We will also show that if $f{\in}BMO$ and f is holomorphic, then ${\parallel}f{\parallel}_{\mathcal{B}}^2{\leq}M{\parallel}f{\parallel}_{BMO}$.