DOI QR코드

DOI QR Code

Structural and Magnetic Properties of Co2MnSi Heusler Alloy Films

  • Lim, W.C. (Department of Materials Science and Engineering, KAIST) ;
  • Okamura S. (Department of Materials Science, Tohoku University) ;
  • Tezuka N. (Department of Materials Science, Tohoku University, CREST, Japan Science and Technology Agency) ;
  • Inomata K. (Department of Materials Science, Tohoku University, CREST, Japan Science and Technology Agency) ;
  • Bae, J.Y. (Department of Materials Science and Engineering, KAIST) ;
  • Kim, H.J. (Department of Materials Science and Engineering, KAIST) ;
  • Kim, T.W. (Device Lab., SAIT) ;
  • Lee, T.D. (Department of Materials Science and Engineering, KAIST)
  • Published : 2006.03.01

Abstract

Recently half-metallic full-Heusler alloy films have attracted significant interests for spintronics devices. As these alloys have been known to have a high spin polarization, very large TMR ratio is expected in magnetic tunnel junctions. Among these alloys, $Co_2MnSi$ full-Heusler alloy with a high spin polarization and a high Curie temperature is considered a good candidate as an electrode material for spintronic devices. In this study, the magnetic and structural properties of $Co_2MnSi$ Heusler alloy films were investigated. TMR characteristics of magnetic tunnel junctions with a $Co_2MnSi/SiO_2/CoFe$ structure were studied. A maximum MR ratio of 39% with $SiO_2$ substrates and 27% with MgO(100) substrates were obtained. The lower MR ratio than expectation is considered due to off-stoichiometry and atomic disorder of $Co_2MnSi$ electrode together with oxidation of the electrode layer.

Keywords

References

  1. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50(25), 2024 (1983) https://doi.org/10.1103/PhysRevLett.50.2024
  2. C. T. Tanaka, J. Nowak, and J. S. Moodera, J. Appl. Phys. 81(8), 5515 (1997) https://doi.org/10.1063/1.364586
  3. S. Kämmerer, A. Thomas, A. Hütten, and G. Reiss, Appl. Phys. Lett. 85(1), 79 (2004) https://doi.org/10.1063/1.1769082
  4. Y. Sakuraba, J. Nakata, M. Oogane, H. Kubota, Y. Ando, A. Sakuma, and T. Miyazaki, Jpn. J. Appl. Phys. 44(35), L1100 (2005) https://doi.org/10.1143/JJAP.44.L1100
  5. K. Inomata, S. Okamura, R. Goto, and N. Tezuka, Jpn. J. Appl. Phys. 42(4B), L419 (2003) https://doi.org/10.1143/JJAP.42.L419
  6. K. Inomata, N. Tezuka, S. Okamura, H. Kurebayashi, and A. Hirohata, J. Appl. Phys. 95(11), 7234 (2004) https://doi.org/10.1063/1.1651813
  7. S. Okamura, R. Goto, S. Sugimoto, N. Tezuka, and K. Inomata, J. Appl. Phys. 96(11), 6561 (2004) https://doi.org/10.1063/1.1810207
  8. H. Kubota, J. Nakata, M. Oogane, Y. Ando, A. Sakuma, and T. Miyazaki, Jpn. J. Appl. Phys. 43(7B), L984 (2004) https://doi.org/10.1143/JJAP.43.L984
  9. S. Ishida, S. Fujii, S. Kashiwagi, and S. Asano, J. Phys. Soc. Jpn. 64(6), 2152 (1995) https://doi.org/10.1143/JPSJ.64.64
  10. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002) https://doi.org/10.1103/PhysRevB.66.174429
  11. P. J. Webster, J. Phys. Chem. Solids 32, 1221 (1971) https://doi.org/10.1016/S0022-3697(71)80180-4
  12. J. Y. Bae, W. C. Lim, H. J. Kim, T. W. Kim, and T. D. Lee, Jpn. J. Appl. Phys. 44(5A), 3002 (2005) https://doi.org/10.1143/JJAP.44.3002
  13. A. Hütten, S. Kämmerer, J. Schmalhorst, A. Thomas, and G. Reiss, Phys. Stat. Sol. (a) 201(15), 3271 (2004) https://doi.org/10.1002/pssa.200405437
  14. J. Schmalhorst, S. Kämmerer, M. Sacher, G. Reiss, A. Hütten, and A. Scholl, Phys. Rev. B 70, 024426 (2004) https://doi.org/10.1103/PhysRevB.70.024426
  15. S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B 69, 094423 (2004) https://doi.org/10.1103/PhysRevB.69.094423
  16. Y. Miura, K. Nagao, and M. Shirai, Phys. Rev. B 69, 144413 (2004) https://doi.org/10.1103/PhysRevB.69.144413

Cited by

  1. FeSn Heusler Alloy vol.160, pp.10, 2013, https://doi.org/10.1149/2.089310jes