Role of surfactant on damping performance of polyaniline based electrorheological suspension

  • Kim, Ji-Woo (Dept. of Polymer Science and Engineering, Inha University) ;
  • Kim, Chul-Am (Dept. of Polymer Science and Engineering, Inha University) ;
  • Choi, Hyoung-Jin (Dept. of Polymer Science and Engineering, Inha University) ;
  • Choi, Seung-Bok (Dept. of Mechanical Engineering, Inha University)
  • Published : 2006.03.01

Abstract

To enhance the stability of dispersed polyaniline (PANI) particles in a silicone oil system, a nonionic surfactant was adopted, and its effect on the electrorheological (ER) performance was investigated under an applied electric field. In the presence of a nonionic surfactant, the PANI based ER fluid exhibited not only an improved sedimentation stability based on the estimated sedimentation ratio but also an enhanced maximum yield stress behavior. Furthermore, the surfactant added ER suspension was applied to an ER damper system, and its damping performance was compared with the ER suspension without a surfactant.

Keywords

References

  1. Cho, M.S., Y.H. Cho, H.J. Choi and M.S. Jhon, 2003, Synthesis and electrorheological characteristics of polyaniline-coated poly(methyl methacrylate) microsphere: size effect, Langmuir 19, 5875-5881 https://doi.org/10.1021/la026969d
  2. Cho, M.S., H.J. Choi and K. To, 1998, Effect of ionic pendent groups on a polyaniline-based electrorheological fluid, Macromol. Rapid Commun. 19, 271-273
  3. Choi, H.J., J.W. Kim and K. To, 1999, Electrorheological characteristics of semiconducting poly(aniline-co-o-ethoxyaniline) suspension, Polymer 40, 2163-2166 https://doi.org/10.1016/S0032-3861(98)00418-2
  4. Choi, H.J., M.S. Cho, K.K. Kang and W.S. Ahn, 2000, Electrorheological properties of a suspension of a mesoporous molecular sieve (MCM-41), Micropor. Mesopor. Mater. 39, 19- 24 https://doi.org/10.1016/S1387-1811(00)00167-0
  5. Choi, H.J., T.W. Kim, M.S. Cho, S.G. Kim and M.S. Jhon, 1997, Electrorheological characterization of polyaniline dispersions, Eur. Polym. J. 33, 699-703 https://doi.org/10.1016/S0014-3057(96)00225-X
  6. Choi, H.J., M.S. Cho and K. To, 1998, Electrorheological and dielectric characteristics of semiconductive polyaniline-silicone oil suspensions, Physica A 254, 272-279 https://doi.org/10.1016/S0378-4371(98)00005-3
  7. Choi, S.B. and S.S. Han, 2003, H-infinity control of electrorheological suspension system subjected to parameter uncertainties, Mechatronics 13, 639-657 https://doi.org/10.1016/S0957-4158(02)00035-1
  8. Choi, S.B., J.H. Choi, Y.S. Lee and M.S. Han, 2003, Vibration control of an ER seat suspension for a commercial vehicle, Trans. ASME, 125, 60-68 https://doi.org/10.1115/1.1506316
  9. Choi, U.S. and Y.S. Park, 2001, Electrorheological behavior of chitosan adipicate suspension as anhydrous ER fluid, J. Ind. Eng. Chem. 7, 281-284
  10. Davies, J.L., I.S. Blagbrough and J.N. Staniforth, 1998, Electrorheological behaviour at low applied electric fields of microcrystalline cellulose in BP oils, Chem. Commun. 2157-2158
  11. Gu, G.Q., K.W. Yu and P.M. Hui, 2002, Relaxation theory for dynamic electrorheological effect, Int. J. Mod. Phys. B 16, 2597-2602 https://doi.org/10.1142/S0217979202012712
  12. Hao, T., A. Kawai and F. Ikazaki, 2000, The yield stress equation for the electrorheological fluids, Langmuir 16, 3058-3066 https://doi.org/10.1021/la990881r
  13. Henley, S. and F.E. Filisko, 2002, Lamellar structures induced by coupled electromagnetic and shear fields: A defining character of ER/MR activity, Int. J. Mod. Phys. B 16, 2286-2292 https://doi.org/10.1142/S0217979202012256
  14. Hong, S.R., S.B. Choi and M.S. Han, 2002, Vibration control of a frame structure using electro-rheological fluid mounts, Int. J. Mech. Sci. 44, 2027-2045 https://doi.org/10.1016/S0020-7403(02)00172-8
  15. Jhon, M.S. and H.J. Choi, 2001, Lubricants in future data storage technology, J. Ind. Eng. Chem. 7, 263-2759
  16. Jordan, T.C. and M.T. Shaw, 1989, Electrorheology, IEEE Trans. Electr. Insul. 24, 849-878 https://doi.org/10.1109/14.42162
  17. Kim, D.H., S.H. Chu, K.H. Ahn and S.J. Lee, 1999, Dynamic simulation of squeezing flow of ER fluids using parallel processing, Korea-Austalia Rheol. J. 11, 233-240
  18. Kim, J.W., H.J. Choi, H.G.. Lee and S.B. Choi, 2001a, Damping characteristics of polyaniline-based electrorheological fluid, J. Ind. Eng. Chem. 7, 218-222 https://doi.org/10.1021/ie50075a019
  19. Kim, J.W., S.G. Kim, H.J. Choi and M.S. Jhon, 1999, Synthesis and electrorheological properties of polyaniline-$Na^+$-montmorillonite suspensions, Macromol. Rapid Commun. 20, 450-452 https://doi.org/10.1002/(SICI)1521-3927(19990801)20:8<450::AID-MARC450>3.0.CO;2-N
  20. Kim, J.W., F. Liu and H.J. Choi, 2002a, Polypyrrole/clay nanocomposite and its electrorheological characteristics, J. Ind. Eng. Chem. 8, 399-403 https://doi.org/10.1021/i500005a001
  21. Kim, S.G., H.J. Choi and M.S. Jhon, 2001b, Preparation and characterization of phosphate cellulose-based electrorheological fluids, Macromol. Chem. Phys. 202, 521-526 https://doi.org/10.1002/1521-3935(20010201)202:4<521::AID-MACP521>3.0.CO;2-Q
  22. Kim, Y.D. and D.H. Park, 2002b, The electrorheological responses of suspensions of polypyrrole-coated polyethylene particles, Colloid Polym. Sci. 280, 828-834 https://doi.org/10.1007/s00396-002-0689-9
  23. Kim, Y.D. and I.C. Song, 2002c, Electrorheological and dielectric properties of polypyrrole dispersions, J. Mater. Sci. 37, 5051- 5055 https://doi.org/10.1023/A:1021091700296
  24. Kim, Y.D., 2001c, A surfactant bridge model for the nonlinear electrorheological effects of surfactant-activated ER suspensions, J. Colloid Interf. Sci. 236, 225-232 https://doi.org/10.1006/jcis.2000.7408
  25. Lee, H.J., B.D. Chin, S.M. Yang and O.O. Park, 1998, Surfactant effect on the stability and electrorheological properties of polyaniline particle suspension, J. Colloid Interf. Sci. 206, 424-438 https://doi.org/10.1006/jcis.1998.5661
  26. Lengalova, A., V. Pavlinek, P. Saha, J. Stejskal, T. Kitano, and O. Quadrat, 2003, The effect of dielectric properties on the electrorheology of suspensions of silica particles coated with polyaniline, Physica A 321, 411-424 https://doi.org/10.1016/S0378-4371(02)01734-X
  27. Lu, J. and X.P. Zhao, 2002, Electrorheological properties of a polyaniline-montmorillonite clay nanocomposite suspension, J. Mater. Chem. 12, 2603-2605 https://doi.org/10.1039/b203921d
  28. Park, W.C., S.B. Choi and M.S. Suh, 1999, Material characteristics of an ER fluid and its influence on damping forces of an ER damper Part II: damping forces, Mater. Design 20, 325- 330 https://doi.org/10.1016/S0261-3069(99)00037-0
  29. See, H. 2004, Advances in electro-rheological fluids: materials, modeling and applications, J. Ind. Eng. Chem. 10, 1132-1145
  30. Sohn, J.I., M.S. Cho, H.J. Choi and M.S. Jhon, 2002, Synthesis and electrorheology of semiconducting poly(naphthalene quinone) radical particles, Macromol. Chem. Phys. 203, 1135-1141 https://doi.org/10.1002/1521-3935(20020501)203:8<1135::AID-MACP1135>3.0.CO;2-F
  31. Sung, J.H., Y.H. Hyun, D.H. Kwon and H.J. Choi, 2002, Viscoelastic property of biodegradable polyester and polyethylene blends: Effect of molecular weight of polyethylene, J. Ind. Eng. Chem. 8, 28-33 https://doi.org/10.1021/i500001a009
  32. Sung, J.H. and H.J. Choi, 2004, Electrorheological characteristics of poly(o-ethoxy)aniline nanocomposite, Korea-Austalia Rheol. J. 16, 193-199
  33. Williams, E.W., S.G. Rigby, J.L. Sproston and R. Stanway, 1993, Electrorheological fluids applied to an automotive engine mount, J. Non-Newtonian Fluid Mech. 47, 221-238 https://doi.org/10.1016/0377-0257(93)80052-D
  34. Wu, S., F. Zeng and J. Shen, 1998, The conductive properties of the electrorheological suspensions based on dihydroxypropyl chitosan particles, J. Appl. Polym. Sci. 67, 2077-2082 https://doi.org/10.1002/(SICI)1097-4628(19980321)67:12<2077::AID-APP13>3.0.CO;2-Z
  35. Zhao, X.P. and J.B. Yin, 2002, Preparation and Electrorheological Characteristics of Rare-Earth-Doped $TiO_2$ Suspensions, Chem. Mater. 14, 2258-2263 https://doi.org/10.1021/cm011522w