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Abstract

In strictly two-sided, commutative biquantale, we introduce the notion of Hutton (L, ®)-uniform spaces and (L, ©)-

uniform spaces and investigate the properties of them.
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1. Introduction

Uniformities in fuzzy sets, have the entourage approach
of Lowen [17] and Hohle [7-8] based on powersets of the
form LX*X, the uniform covering approach of Kotzé [15]
and the uniform operator approach of Rodabaugh [19] as
generalization of Hutton [13] based on powersets of the
form (LX)(Z™). For a fixed basis L, algebraic struc-
tures in L (cqm-lattices, quantales, MV-algebras) are ex-
tended for a completely distributive lattice L [13,16,22,23]
or the unit interval [17,20] or ¢t-norms [7-8]. Recently,
Gutiérrez Garcia et al.[5] introduced L-valued Hutton uni-
fomity where a quadruple (L, <, ®, %) is defined by a GL-
monoid (L, *) dominated by ®, a cl-quasi-monoid (L, <
,®).

In this paper, as a somewhat different aspect in [5],
we introduce the notion of Hutton (L, ®)-uniformities as a
view point of the approach using uniform operators defined
by Rodabaugh [19] and (L, ®)-uniformities in a sense
Lowen [17] and Hohle [7-8] based on powersets of the
form LX*X, We investigate the relationship between Hut-
ton (L, ®)-uniformities and (L, ®)-uniformities.

For general background for a fuzzy logic, we refer to
[6,9-12,18,19,24].

2. Preliminaries

Definition 2.1 [14,21] A triple (L,<,®) is called
a strictly two-sided, commutative biquantale (stsc-
biquantale, for short) iff it satisfies the following prop-
erties:

L) L = (L,<,V,A,T,1) is a completely distribu-
tive lattice where T is the universal upper bound and L
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denotes the universal lower bound;
(L2) (L, ®) is a commutative semigroup;
L3)a=a® T,foreacha € L;
(L4) @ is distributive over arbitrary joins, i.e.

(V a)ob=\/(a:00).

el iel

(L5) © is distributive over arbitrary meets, i.e.

(Na)ob= N\(a0b).
iel i€l
Remark 2.2 [12-14, 23](1) A completely distributive lat-
tice (ref. [16]) is a stsc-biquantale. In particular, the unit
interval ([0, 1], <, V, A, 0, 1) is a stsc-biquantale.
(2) The unit interval with a continuous t-norm ¢,
([0,1], <, t), is a stsc-biquantale.
(3) Let (L, <, ®) be a stsc-biquantale. For each z,y €
L, we define

w—ayz\/{zeleQZSy}.

Then it satisfies Galois correspondence, that is,
(zoy) <ziffz < (y — 2).

In this paper, we always assume that (L, <,®,* ) is a
stsc-biquantale with strong negation * where a* = a — 0
unless otherwise specified. -

Let X be a nonempty set. All algebraic operations on L
can be extended pointwisely to the set LX as follows: for
alze X, f,ge LX anda € L,

M) f < giff f(z) < g(z);

@ (f o g)(z) = f(z) ©g(z);

@ ix(z)=T, a0lx(z)=aandly(z)=1;

@ (@ — V(@) = a — A@) and (A — a)(z) =
Az) — o

3 (@O N)(z) = a® A(z).
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Lemma 2.3 [6,10,24] Foreachz,y,z € L, {y; |1 €'} C
L, we have the following properties.
(DIfy<z (r0y) < (202).
Qz0y<zTAyY.
Bzo(z—y) <y
DHzoy—2)<y—z0z
BPzexOy—2)<y— =2
®)(z—-y)o(z-w)<(z02)—
Mz—y<(y—2)—(z—2).
®zx—y=y"— 2z
® Aiel‘ y: = (Viel‘ yi)* and \/ier y: =
A0 (zQy) mz=z— (y — 2).

(yow).

(/\ier yi)*'

3. Two types of quasi-uniform spaces

Definition 3.1 Let Q(X) be a subset of (LX)™) such
that
(O X < ¢(N), for every X € L%,

(02) ¢(Vzer‘ ) = VzeI‘ ¢( ) for {)\ }1€F c LX.
(03) a © ¢(N\) = ¢(a ® A), for A € LX.

Example 3.2 Let ([0, 1], ®) be a biquantale such that z ©

y = (z+y—1)Aland X = {z,y}. Forp(z) = 0.7, p(y) =
0.5, define ¢, € (LX)Z™) as follows:
lg if A =1y,
pp(N) =4 p iflg#A<p,
1x ifA £ p.

¢, satisfies (O1) and (O2) but not (O3) because
p=¢,030 1{1}) #030 ¢p(1{$}) =0301x.

Lemma 3.3 For ¢,¢1,02 € Q(X), we define, for all

Ae L¥,
= N e L¥ | o(p") < A"},
¢1 0 $2(A) = d1(¢2(A)),
$1® d2(A\) = A\{d1(M1) @ d2(X2) [ A = X1 © Ao}

For ¢1, ¢2, d3 € QX), the following properties hold:

) If $(14z)) = pz for all x € X, then ¢(A) =
Viex M2) @ .

@) i $:1(14ay) = ¢o(l(ny) for all & € X, then
1 = ¢2.

(3) ¢! € QX)) and ¢ 0 P2 € Q(X).

@) If 1 < o, then ¢7' < 65"

(5) 1 ® ¢2 € QAX).

(6) g1 ® P2 < 1 and ¢ R P2 < ¢o.

(7) (61 ® ¢2) ® P53 = $1 ® (P2 ® ¢3), -

(8) (1 ® p2) 0 (91 ® P2) < (P10 1) ® (P2 0 P2).

9) Define o7 € Q(X) as ¢T(1{z}) = 1x,Vz € X.
Then ¢ < ¢t forall ¢ € Q(X).
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Proof. (1) For all A € L%, we write A = \/ cx A(2) ©
l{z}. Thus,

(A =d(V.ex A2) O 1)
V.ex A(2) © ¢(1423)
VZGX A(Z) © Pz-

(2 For A =V . x AM(2) ® 11;), we have

¢1()‘) = VzeX )‘(z) © ¢1(1{z})
= V.ex M2) © ¢2(1(2})
= ¢2(A). »

(3) We only show (03) a® ¢~ 1(\) = ¢~
Ae LX.

o Ha @A) =ApeLl*|¢()
=NMpeLX|aod(p*
=NpeL¥ | 4(a

') =aoApelX|
=NMaou] o) <

Let o ©® p € L* such that ¢(u*) < A*. Since a ® (@ ©
p)* < p* from Lemma 2.3(5) and ¢(a oo u)*) <
d(u*) < A*. Hence ¢~ H(a O N) <a® ¢ H(A).

Let p € LX with ¢(a © p*) < A*. Putu* = a © p*.
By Lemma 2.3(10),

Ha© M), for

a® ¢~

u=u**=(a®p*)*:a—>p**=a—>p.

Hence o ® pp = a ® (a — p) < p. Thus, ¢~ H(a ® A) >
a® ¢ (N).

Simiarly, ¢ o ¢ € Q(X) is easily proved.

(4) Since ¢1(p*) < Pa(p*) < A*, it easily proved.

(5) (03) We show (¢1 ® d2)(Vier i) < Vier{d1 ®

¢2)(4;)- Suppose

(61 @ ¢2)(\/ 1) £ \/ (&1 @ 62)(a)

i€l i€l

\/ (A1) @ 62(p:) | i @ pi = ui})-
Since L is a completely distributive lattice, by the defini-
tion of (¢; ® ¢2)(u;), for each i € T, there exist Ay, p;
with u; = A\; ® p; such that

(61 ® $2)(\/ 1) £ \/{1(N) © p2(pi)}-
i€l i€l
On the other hand, since \/; . pti = (V;er Ai) © (Vier )
from (LA4),
(1@ ¢2)(Vier i) < ¢1(Vier M) © ¢2(Vier )
= (Vier #100) © (Vier 92(00))
= Vier{®1(X\i) © ¢2(p:)}-



It is a contradiction. Hence the result holds. (O1) and (03)
are easily proved. So, ¢1 ® ¢2 € Q(X).:

(6) For p = p © 1x, we have ¢1(p) = é1(p) ©
$1(1x) = (¢1 ® p2)(1).

(7) Suppose there exists 4 € LX with (¢ ® (2 ®

¢3)) (1) £ ((¢1 ® ¢2) ® ¢3)(1). Then there exist y; with
1= i1 © po such that

(61 ® (62 @ ¢3)) (1) £ (61 ® P2)(111) © ¢3(p2).

By (L5), there exist p; and p, with p; = p; ® ps such that

(91 ® (¢2 ® ¢3)) (1) £ ($1(p1) © P2(p2)) © B3(p2)-

On the other hand, since (p1 ® p2) © p2 = p1 © (p2 © u2)

(61 ® (92 ® ¢3)) (1) < b1(01) © (d2(p2) © ¢3(2))-

It is a contradiction. Thus, $1 ®(p2Q¢3) < (1 ®p2) V3.
Similarly, ¢1 ® (¢2 ® ¢3) > (61 ® ¢2) ® ¢3.
(8) Suppose there exists 4 € L with (¢1 @ ¢2)o (¢ ®

¢2)(1) £ (10 ¢1) ® (¢2 0 ¢2)(u). Then there exist p;
with p = ©1 © s such that

(91 ®@2) 0 (P1®¢2) (1) £ (d1061) (1) O (P20 ¢a)(p2).

But
(61 @ ¢2) 0 (¢1 ® P2) (1)
< (¢1 ® B2)(d1(11) © p2(p2))
< ¢1(1(p1)) © Pa(d2(p2)).

It is a contradiction. Thus, (¢1 ® ¢2) o ($1 ® @) <
(¢1061) ® (¢2 0 P2).

(9) Since ¢(1(z3) < ¢7(1(zy) = 1x,Vz € X, we
have ¢ < ¢ for all ¢ € Q(X).

We define a somewhat different aspect in [5], we in-
troduce the notion of (L, ®)-uniformities as a view point
of the approach using uniform operators defined by Rod-
abaugh [19].

Definition 3.4 A nonempty subset U of (X)) is called a
Hutton (L, ®)-quasi-uniformity on X if it satisfies the fol-
lowing conditions: ‘

QU If ¢ < o with ¢ € U and v € Q(X), then
¥ € Ul

(QU2) For each ¢, € U, ¢ ® 9 € U.

(QU3) For each ¢ € U, there exists ¢ € U such that
porp < &
The pair (X,U) is said to be a Hutton (L,®)- quasi-
uniform space.

A Hutton (L, ®)- quasi-uniform space is said to be a
Hutton (L, ®)-uniform space if it satisfies

(U) For each ¢ € U, there exists ¢~ € U.

Example 3.5 Let X = {z,y, 2} be aset and ([0,1],®) an
biquantale defined by x®y = max{0, z+y—1} (ref.[6,10-
12,18,24]).

Two types of uniform spaces

(1) Define ¢ € Q(X) as follows:
¢(1ia}) = d(1iyy) = Yayy, $(l1ey) = d(1(2y)

Since

P8 d(1{e}) = 6@ I(Liy}) = Lizy}, $®G(1(z)) = 12y,
by Lemma 3.3(2), ¢ ® ¢ = ¢. We have ¢ o ¢ = ¢ because

¢od(liz}y) = ¢0d(leyy) = Lizyp, #08((112})) = 1(z)-

Since

¢ (Liz)) = 67 (1y)) = Ly, 67 (1)) = Lz,

Hence ¢! = ¢.
(2) Define U = {¢p € Q(X) | ¢ < ¢}. ThenUisa
Hutton (L, ® )-uniformity on X from (1).

We define an (L, ®)-uniformity in a sense Lowen [17]
and Hohle [7-8] based on powersets of the form L¥X*X

Definition 3.6 Let E(X x X) = {u € LX*X | u(z,z) =
1} be a subset of LX*X. A nonempty subset D of
E(X x X) is called an (L, ®)-quasi-uniformity on X if
it satisfies the following conditions:

@Q@DDIfu <wvwithu € Dandv € E(X x X), then
v e D.

(QD2) For each u,v € D, u ®v € D.

(QD3) For each u € D, there exists v € D such that
vowv < u where

vou(z,y) = \/ (v(z,2) O v(z)).

z€X

The pair (X, D) is said to be an (L, ®)- quasi-uniform
space.

An (L, ©®)-quasi-uniform space is said to be an (L, ®)-
uniform space if it satisfies

(D) For each u € D, there exists u° € U where

w*(z,y) = u(y, ).

Definition 3.7 A function v : X x X — L is called an
O-quasi-equivalence relation iff it satisfies the following
properties

EDu(z,z) =1forallz € X.

(E2) u(z, ) © u(y, 2) < u(z, 2).

An O-quasi-equivalence relation is called an ®-
equivalence relation on X if it satisfies

(B) u(z,y) = u(y, z).

We denote v? = y ® u and ©"t! = 4™ ® u for each
we LX*X

Theorem 3.8 Let v : X x X — L be an ®-equivalence
relation. We define a mapping D, as follows:

D,={ve E(X xX)|3ne N,u" <v}.
Then D, is an (L, ©)-uniformity on X.
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Proof. (QD1) Obvious. (QD2) Let v; € D, for: = 1, 2.
There existn; € N suchthatu™ < v;. Hencen;+ny € N
such that v™ ™2 < y; © v,.

(QD3) For v € D,, there exists n € N such that
u™ < v. Since u is an ®-equivalence relation, v o u < u.
We have (u o u)? > u? o u? because

(uou)*(z,y)

=V.ex (4@, 2) 0u(,9) © Vyex Eu(z, w) G ulw, y)%

= V.ex Vaex (4@ 2) 0 u(z,p)) ©
> V.ex (u(@,2) © u(z,) © u(z,2) 0 u(z,))
>V, ex (#3(2,2) 0 u3(2,9))

= u? o u*(z,y).

We obtain 4™ o 4™ < (uou)” <u™ <vandu™ € D,,.

(D) For v € D,,, there exists n € N such that u" < v.
Since v is an (©-equivalence relation, ©® = wu. Then
u = (1) = (u™)® < v® implis v° € D,,.

Example 3.9 Let X and (L = [0,1],®) be defined as in
Example 3.5. Let u € E(X x X) be an ®-fuzzy quasi-
equivalence relation on X as

u(z,z) = u(y,y) = u(z, 2) = u(z,y) = 1,
u(y,z) = 0.7,u(y, 2) = u(z,y) = 0.6,
u(z, z) = u(z,z) = 0.5.

Then

ui(z,2) = u(y,y) = u’(z,2) = u(w,y) = 1,

ud(y,z) = u3(y, 2) = ud(z,y) = ud(z,2) = ud(z,z) = 0.

Define D = {v € E(X x X) | «® < v}. Then D
is an (L, ®)-quasi-uniformity on X but not an (L, ®)-
uniformity on X because (u?)* ¢ D.

Theorem 3.10 We define a mapping T' : E(X x X) —
QX)) as follows:
L) = VA © ).
z€X

Then we have the following properties:
(1) Foru € E(X x X), I'(u) € Q(X) and I'(u) has a
right adjoint mapping T (u) defined by

D)~ () = \/{p € LX | T(w)(p) < A).

(2) T is injective and join preserving map.
(3) T has a right adjoint mapping A :
E(X x X) as follows:

A(9)(z,y) = d(112) ()
@ ToA=1gxyand AoT = E(X x X).

QX) —
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u(z, w) © u(w,y)

Proof. (1) I' is well-defined because I'(u) € Q(X) from
the following statements:

OD L(w)(A)(z) = V.ex A2) @ u(z,2) 2 AMz) ©
u(z,z) = A(z) forall A € LX.

(02) I'(u) is join preserving because

L)V A ) = Voex(V; Mi(@)) 0 u(z,y)
= Vi(Viex Mi@) © ulz, y))
=V, T(@)(A)(v)
(03) is easily proved.

By (02), I'(u) has a right adjoint mapping I'(u)—.
(2) T 1is injective because, for each Lz,

L) (123) () = u(2,y) = ua(z,y) = D(u2)(1(23)(y)-
I’ is join preserving because

F(V;ud(N(©) = V,ex M2) 0V, us(,y)
= VilVoex M2) © ui(z, y))
=V T(u)(A) ()

3
A(9)(z,y)

= V{u(@, ) | T(w)(A\(z) © L{z})(y) < $(A(2) © Lizy)(9)}

= V{ulz, ) | Mz) © ulz, 1) < $(A\) © 112)) @)}
(put A(z) = @)

= V{u(z,) | u(z,9) < A — ¢ 0 ¢(14) 1)}

= Ao (@ = 2@ 9(1e)W))

Since

A (= a0o(in)m)

(87

<T—->T0E ¢(1{x})(y) = ¢(1{z})(y)y
we have A(¢)(z,y) < ¢(1(4))(y). Since o © ¢(lzy) <
a® ¢(1g}), we have
$(1e)W) < A (0 = 00 9(16))w)) = A9)(@,9).

Hence A(¢)(z,y) = ¢(1(z}) ().
Furthermore, A{¢) € E(X x X) from:
“

LA@))N(WY) = Vaex Ma) © A@)(z,y)
~Vaex (M) © 6(112)®))
= Veex ¢(A(@) © 1(2))(y)

= d(N) ().

Hence I'o A = 1q(x).
We have A o' = 1g(x x x) from:

A(T(w))(z, y) = T(w)(Liz3)(y)

zeX
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Example 3.11 Let X and (L = [0,1],©) be defined as (C(w))~! > T(u®) from:
in Example 3.5. Then z — y = min{l,1 — z + y} for
each z,y € L. Letu € E(X x X) be an ®-fuzzy quasi- T(u)(p— L)(¥) = Vyex (o — L)(@) ©ulz,y) < My)
equivalence relation on X as & (p— L)(z) oulz,y) < AMy) —
= = = = & (p— L){(z) <ulz,y) - (Ay) = 1)
u(z,z) = u(y,y) = u(z,2) = u(z,y) = 1, o p(z) > \z) O ulr.y)
u(y, 1:) = 0.7, u(y, Z) = U(Z,y) = 06» - P(ﬂ?) > VyGX )\(y) ® us(y, CD)
u(z, z) = u(z,z) = 0.5,
Then (5)Forall A\ € LX, T(u)"'(A — 1) =T(w)~(\) — L
from: :
P)(le) = prs pale) = Lpel) =u(wy) =1,
pz(2) = 0.5, Fw)™A—1) =A{pe L;Xl F1£ u)(p*) < i |
= 1 < —
T(w)(ly) = py, py(x) = 0.7,p,(y) = 1, p,(2) = 0.6, = 1\1/({15 E(/\) _J L(u)(p }
L(u)(1;) = pz, p(x) = 0.5,p.(y) = 0.6,p.(2) = 1.
Since (6)
AT (w))(z, 7) = T'(w) (L )(x) = u(z, ),
- N D (ua) () (V) (w)
by a similar method, we obtain A o I'(u) = wu for all = V,ex D) (V) (@) © ua(z, y)
u € E(X x X). | = Viex | Viex A(2) ©ui(z,7) ) © ua(z,y)
Theorem 3.12 Let u, u1,us € E(X x X). Then we have -
the following properties: ’ Veex Veex (A2) O (ui(z,2) © ug(z, y)))
() Ifuy < ug, T(uy) < T(u). =V.,ex /\(Z) O VzeX(ul(Zv z)© uQ(:v,y)))
2y T(ur © ug) < Tuq) @ Tug). _ o
3) F(l;) =2lLX~ ! 2 \/zeX (u1 oug)(z,y )
@) D(w)~) = D(uf). =T(ur 0 w)( )( )-
G) Tw)™ (A - L) = D)=\ — 1, for all
e LX, (7) Obvious.
(6) T'(u1 0 ug) =T'(uz) o ['(uy). (8) Since u o u < u and ©® = w, it is easily proved.

NI{aGu)=a0T'(u).

(8) If u is an ©-equivalence relation on X, then
1 sy _ Example 3.13 Let X, (L = [0,1],0) andu € E(X x X)
(D())™ =T(?) = T(u), T(w)oT(u)=T(u) be defined as in Example 3.11. Since I'(u)"'(1,) =
Proof. (1) It is easy from the definition of T". Ap* | T(u)(p) < 1,1}, then
(2) T'(ug @ uz) € I'(u1) @ I'(uz) from the following: for
all A = A ®O Ag,

I(u1 © u2)(A © A2)(y)
= VJJEX(/\l ® )\2)(-@) O) (Ul © 'UQ)(.’E,?J)

I(w) (1) = (030 14y V050 13y ) — L

< (Voo () ©1(2,5) © (Vocx Aa(2) ©ua(z,1)) (=) = (e, ) = (s
= o0 ® e 0. D) = V e ove, D) =l ) =u=a)
© yr Sﬁ()_(k)(y) = VoexN@) @ 1a@u)) = Ma) for e TP(u)(Lgay) = T(w)(lgsy). Similarly, we
@ (F(u))_l < T'(u®) from: i—l‘a&ve)f‘l(u)}l((l‘g{;}) = P(us)(l{z}) for all z € X. Hence
r(w)(T(w*)(N) = 1) ()
= Vzex (F@)(A) — )(I) © u(z,y) Theorem 3.14 Let v : X x X — L be an ®-equivalence
=V,ex ( Voex Az) @ u(—, 2)) — )( ) ® u(z, y) relation. We define a mapping U, as follows:
=Vaex Nex (@) @ u(z,2) = 1) 0u(z,v) U, = {$ € X) | Ine N, T(u") < ¢}.
< Vaex (M) @ u(z,1) > 1) 0 u(s,9)
<Ay)— L Then U, is a Hutton (L, ®)-uniformity on X.
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Proof. (QU1) Obvious.

QU2) If ¢,y € U,, there exist m,n € N such
that T'(u™) < ¢ and T'(u™) < 3. Then D{u™t") <
MNu™) @ T'(u™) < ¢ ® 1. Hence ¢ @ ¢ € U,

(QU3) For ¢ € U, there exists n € N such that
I'(u™) < ¢. Since u™ o u™ < (uou)™ < u", there ex-
ists I'(u™) € U,, such that

Pu™)oT'(w™) =T (" ou™) < T'((uou)™) <T'(w") < ¢.

(U) For ¢ € U, there exists n € N such that
I'(u™) < ¢. Then ¢~ ! € U, because

P(u") =T((u)") =T((u")*) =T(") ™" < ¢

Theorem 3.15 Let ¢, ¢1,¢2 € Q(X). Then we have the
following properties:

() If ¢1 < @2, then A(dr) < A(d2).

(2) A1) © Ag2) = A1 ® ¢2).

3 A(l x) = 1a.

OFNCIEFNC

(5) A(#1) o A(d2) = A(¢2 0 $1).

G)A(a© @) = a0 A(P).

MIlfpop = ¢dand ¢ = ¢, then A(¢) is an ®-

equivalence relation.

Proof. (1) It is easy from the definition of A.
(2) We have A(¢1) © A(d1) = A(g1 ® ¢2) because

(A1) © A(d2))(z,y) = 1 (1123 (¥) © ¢2(14a2y) (v)

= (¢1 ® 92)(L(z3)(y)-

) Apx)(z,y) = 1px(Ie) W) = Lin(y) =
lA(ZE,y).
(4) Suppose A(¢p)*(x,y) £ A(¢™!)(z,y). Since

A(#)*(z,y) = A(@)(y, 7) = p(1y))(x)

Ao™H)(@,y) = ¢ (14ay) (v),

by the definition of A(¢™!), there exists A with ¢(A*) <
1{zy — L such that

A(@)*(z,y) £ My).
Since ¢(A*) < 1,3 — L implies ¢(A*)(z) = L, we have

A(p) (z,y) £ Ay)

= A@)*(z,y) £ (6(NV)(z) — L) — Ny)
& AB)°(z,y) £ A*(y) — d(A*)(2)

(by Lemma 2.3(8))

Since \* =V, x A*(2) © 1,3, we have

zeX
X(y) — o(V*)(2)

= A(Y) = V,ex (@(X*(2) © 113 )(2)
> X (y) = $(A*(y) © 1)) (@)

> ¢(Liyy) (@)
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Thus, :
A(¢)*(z,y) £ p(1iy3)(=).
It is a contradiction. Hence A($)® < A(¢1).

Suppose A(¢)*(z,y) 2 A(¢~)(z,y). By the defini-
tion of A(¢)*(z,y), there exists a € L such that

a—a®d(ly))(z) 2 Ao~ (=, y)
Since @ © ¢(1gy)) = Pl © 1{y})’ we have ¢(1{y}) <
o — a0 @(ly). Putp = (a — a0 ¢(1{y})) -4
then ¢_1(P) < 1&,}- Since p = vzeX p(z) © 1{2}‘ Put
B = p(z). Then
B—B0¢ (1))(y) < B — 17, ) ="

It implies

AH(@,y) = Ag (6> a0 671 W))
<B—-F0O ¢_1(1{z})(y)
<p- 1?y}(y)
=0 =a—=a0d(ly)(z).

It is a contradiction. Hence A(¢)® > A(¢~1).
(5) A(1) o A(¢2) < A¢1 © ¢2) from:

(A(g1) 0 A(92))(@, )
=V, 191(1{z})(2) © ¢2(1{z})(y)}
=V, (2(61(12)(2) @ 1)) w)
=62( V. 01(1)(2) 0 1)) ()
= ¢2 0 ¢1(1z3)(y)

© )‘(a © ¢)(I7 y) = (a © ‘rb(l{x}))(y) = a0
P(L(z})(y) = a2 © M¢) (=, y).
(7) Since ¢ 0 ¢ = ¢ and ¢ = ¢~ 1, it is proved from

A(¢) o A(9) = A(@), A(@71) = A(¢)° = A(4)-

Theorem 3.16 Let D be an (L, ©)-uniform space. We de-
fine a mapping Up C Q(X) as follows:

Up = {¢ € UX) | Fu e D,I'(u) < ¢}.
Then Up is a Hutton (L, ®)- uniformity on X.

Proof. (QU1) Obvious. (QU2) Let ¢; € Up fori = 1,2.
There exists u; € D such that I'(u;) < ¢;. Since

[(u1 ©ug) <T(w1) @T(u2) < ¢1 ® ¢o,

we have ¢ ® ¢ € Up.

(QU3) Let ¢ € Up. There exists u € D such that
T'(u) £ ¢. Since D is an (L, ®)-uniformity, for v € D,
there exists v € D such that v o v < u. Since

[(w)oT(v) =T(vov) <I'(u) < 4,



there exists I'(v) € Q(X).

(U) Let ¢ € Up. There exists u € D such that
T'(u) < ¢. Since D is an (L, ®)-uniformity, for v € D,
there exists u® € D such that I'(v®) = ['(u)~! < ¢~}
from Lemma 3.3(4). Hence ¢! € Up.

Theorem 3.17 Let U be a Hutton (L, ®)-uniformity on X.
We define a mapping Dy C E(X x X) as follows:

Dy ={uc E(X xX)|3¢€U,A@¢) <u}.

Then:
(1) Dy is an (L, ®)-uniformity on X.
2Dy, =D and Up, =U.

Proof. (1) (QD2) If u; € Dy for i = 1, 2, then there exist
¢; € U such that A(¢;) < u;. Since

A(d1 ® ¢2) =

then u; ® ue € Dy.

(QD3) If u € Dy, then there exists ¢ € U such that
A(¢) < wu. Since U is a Hutton (L, ®)-uniformity, for
¢ € U, there exists 1 € U such that ¢) o 9 < ¢. Since

AW) o A(¥h) = A oy) S A(¢) Su

then A(v)) € Dy.

(D) If v € Dy, then there exists ¢ € U such that
A(¢) < w. Since U is a Hutton (L, ®)-uniformity, for ¢ €
U, there exists ¢~ € U such that A(¢71) = A(¢)* < u.
Thus, u® € Dy.

(2) Let u € Dy,. Then there exists ¢ € Up such
that A(¢) < u. Since ¢ € Up, there exists v € D such
that I'(v) < ¢. Since v = A(T'(v)) < u, then u € D.
Hence Dy, C D. Let w € D. Then I'(u) € Up. Also,
u = A(I'(v)) € Dy,,. Similarly, we prove Up, = U.

A(¢1) © A(¢2) < u1 O ug,

Example 3.18 Let U = {¢ € Q(X) | ¢ < 1} be defined
as in Theorem 3.5. We obtain Dy = {u € E(X x X) |
A($) < u}. Since po ¢ = ¢ and ! = ¢, by Theorem
3.15(7), A(¢) is an ®-equivalence relation such that

A(@)(z,y) = d(1ie))(Y) = Loy (¥) = 1,

A(g)(z,z) = 1, A(p)(z,
A(@)(y:x) = 1, Me)(y,y) = 1, A(9)(y, 2)

)it
A(¢)(zax) =0, A(¢)(Z7y) =0, A(¢)(

Furthermore, A(6) o A(6) = A(6), A(6™1) = A(¢)° =
A(¢) and A(¢) © A(¢) = A(¢ ® ¢) = A(¢). Hence Dy
is an (L, ®)-uniformity on X and Up, = U.

2) =0

ll

ll

z,2)

Two types of uniform spaces
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