Two types of uniform spaces

Yong Chan Kim¹ and Young Sun Kim²

Department of Mathematics, Kangnung National University, Gangneung, 201-702, Korea
 Department of Applied Mathematics, Pai Chai University, Daejeon, 302-735, Korea

Abstract

In strictly two-sided, commutative biquantale, we introduce the notion of Hutton (L, \otimes) -uniform spaces and (L, \odot) -uniform spaces and investigate the properties of them.

Key words: Hutton (L, \otimes) -uniform spaces, (L, \odot) -uniform spaces

1. Introduction

Uniformities in fuzzy sets, have the entourage approach of Lowen [17] and Höhle [7-8] based on powersets of the form $L^{X \times X}$, the uniform covering approach of Kotzé [15] and the uniform operator approach of Rodabaugh [19] as generalization of Hutton [13] based on powersets of the form $(L^X)^{(L^X)}$. For a fixed basis L, algebraic structures in L (cqm-lattices, quantales, MV-algebras) are extended for a completely distributive lattice L [13,16,22,23] or the unit interval [17,20] or t-norms [7-8]. Recently, Gutiérrez García et al.[5] introduced L-valued Hutton unifomity where a quadruple $(L, \leq, \otimes, *)$ is defined by a GLmonoid (L, *) dominated by \otimes , a cl-quasi-monoid (L, \leq, \otimes) .

In this paper, as a somewhat different aspect in [5], we introduce the notion of Hutton (L,\otimes) -uniformities as a view point of the approach using uniform operators defined by Rodabaugh [19] and (L,\odot) -uniformities in a sense Lowen [17] and Höhle [7-8] based on powersets of the form $L^{X\times X}$. We investigate the relationship between Hutton (L,\otimes) -uniformities and (L,\odot) -uniformities.

For general background for a fuzzy logic, we refer to [6,9-12,18,19,24].

2. Preliminaries

Definition 2.1 [14,21] A triple (L, \leq, \odot) is called a *strictly two-sided*, *commutative biquantale* (stsc-biquantale, for short) iff it satisfies the following properties:

(L1) $L=(L,\leq,\vee,\wedge,\top,\perp)$ is a completely distributive lattice where \top is the universal upper bound and \bot

denotes the universal lower bound;

- (L2) (L, \odot) is a commutative semigroup;
- (L3) $a = a \odot \top$, for each $a \in L$;
- (L4) ⊙ is distributive over arbitrary joins, i.e.

$$(\bigvee_{i\in\Gamma}a_i)\odot b=\bigvee_{i\in\Gamma}(a_i\odot b).$$

(L5) ⊙ is distributive over arbitrary meets, i.e.

$$(\bigwedge_{i\in\Gamma}a_i)\odot b=\bigwedge_{i\in\Gamma}(a_i\odot b).$$

Remark 2.2 [12-14, 23](1) A completely distributive lattice (ref. [16]) is a stsc-biquantale. In particular, the unit interval ($[0, 1], <, \lor, \land, 0, 1$) is a stsc-biquantale.

- (2) The unit interval with a continuous t-norm t, $([0,1], \leq, t)$, is a stsc-biquantale.
- (3) Let (L, \leq, \odot) be a stsc-biquantale. For each $x, y \in L$, we define

$$x \to y = \bigvee \{z \in L \mid x \odot z \le y\}.$$

Then it satisfies Galois correspondence, that is,

$$(x \odot y) \le z \text{ iff } x \le (y \to z).$$

In this paper, we always assume that $(L, \leq, \odot, *)$ is a stsc-biquantale with strong negation * where $a^* = a \to 0$ unless otherwise specified.

Let X be a nonempty set. All algebraic operations on L can be extended pointwisely to the set L^X as follows: for all $x \in X$, $f, g \in L^X$ and $\alpha \in L$,

- (1) $f \leq g \text{ iff } f(x) \leq g(x);$
- $(2) (f \odot g)(x) = f(x) \odot g(x);$
- (3) $1_X(x) = \top$, $\alpha \odot 1_X(x) = \alpha$ and $1_{\emptyset}(x) = \bot$;
- (4) $(\alpha \to \lambda)(x) = \alpha \to \lambda(x)$ and $(\lambda \to \alpha)(x) = \lambda(x) \to \alpha$;
 - (5) $(\alpha \odot \lambda)(x) = \alpha \odot \lambda(x)$.

Manuscript received Feb. 28, 2006; revised Mar. 9, 2006.

Lemma 2.3 [6,10,24] For each $x,y,z\in L$, $\{y_i\mid i\in \Gamma\}\subset$ L, we have the following properties.

(1) If
$$y \leq z$$
, $(x \odot y) \leq (x \odot z)$.

(2)
$$x \odot y \le x \wedge y$$
.

$$(3) x \odot (x \to y) \le y.$$

(4)
$$x \odot (y \rightarrow z) \leq y \rightarrow x \odot z$$
.

$$(5) x \odot (x \odot y \rightarrow z) \leq y \rightarrow z.$$

$$(6) (x \to y) \odot (z \to w) \le (x \odot z) \to (y \odot w).$$

$$(7) x \to y \le (y \to z) \to (x \to z).$$

$$(8) x \to y = y^* \to x^*.$$

(9)
$$\bigwedge_{i \in \Gamma} y_i^* = (\bigvee_{i \in \Gamma} y_i)^*$$
 and $\bigvee_{i \in \Gamma} y_i^* = (\bigwedge_{i \in \Gamma} y_i)^*$.
(10) $(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z)$.

$$(10)\ (x\odot y)\to z=x\to (y\to z).$$

3. Two types of quasi-uniform spaces

Definition 3.1 Let $\Omega(X)$ be a subset of $(L^X)^{(L^X)}$ such

(O1)
$$\lambda \leq \phi(\lambda)$$
, for every $\lambda \in L^X$,

(O2)
$$\phi(\bigvee_{i \in \Gamma} \lambda_i) = \bigvee_{i \in \Gamma} \phi(\lambda_i)$$
, for $\{\lambda_i\}_{i \in \Gamma} \subset L^X$.
(O3) $\alpha \odot \phi(\lambda) = \phi(\alpha \odot \lambda)$, for $\lambda \in L^X$.

(O3)
$$\alpha \odot \phi(\lambda) = \phi(\alpha \odot \lambda)$$
, for $\lambda \in L^X$.

Example 3.2 Let $([0,1], \odot)$ be a biquantale such that $x \odot$ $y = (x+y-1) \land 1$ and $X = \{x, y\}$. For $\rho(x) = 0.7, \rho(y) = 0.7$ 0.5, define $\phi_o \in (L^X)^{(L^X)}$ as follows:

$$\phi_{\rho}(\lambda) = \begin{cases} 1_{\emptyset} & \text{if } \lambda = 1_{\emptyset}, \\ \rho & \text{if } 1_{\emptyset} \neq \lambda \leq \rho, \\ 1_{X} & \text{if } \lambda \nleq \rho. \end{cases}$$

 ϕ_{ρ} satisfies (O1) and (O2) but not (O3) because

$$\rho = \phi_{\rho}(0.3 \odot 1_{\{x\}}) \neq 0.3 \odot \phi_{\rho}(1_{\{x\}}) = 0.3 \odot 1_X.$$

Lemma 3.3 For $\phi, \phi_1, \phi_2 \in \Omega(X)$, we define, for all $\lambda \in L^X$.

$$\phi_{\cdot}^{-1}(\lambda) = \bigwedge \{ \rho \in L^X \mid \phi(\rho^*) \le \lambda^* \},$$

$$\phi_1 \circ \phi_2(\lambda) = \phi_1(\phi_2(\lambda)),$$

$$\phi_1 \otimes \phi_2(\lambda) = \bigwedge \{ \phi_1(\lambda_1) \odot \phi_2(\lambda_2) \mid \lambda = \lambda_1 \odot \lambda_2 \}.$$

For $\phi_1, \phi_2, \phi_3 \in \Omega(X)$, the following properties hold:

- (1) If $\phi(1_{\{x\}}) = \rho_x$ for all $x \in X$, then $\phi(\lambda) =$ $\bigvee_{z\in X}\lambda(z)\odot\rho_z.$
- (2) If $\phi_1(1_{\{x\}}) = \phi_2(1_{\{x\}})$ for all $x \in X$, then $\phi_1 = \phi_2$.
 - (3) $\phi^{-1} \in \Omega(X)$ and $\phi_1 \circ \phi_2 \in \Omega(X)$.
 - (4) If $\phi_1 \leq \phi_2$, then $\phi_1^{-1} \leq \phi_2^{-1}$.
 - (5) $\phi_1 \otimes \phi_2 \in \Omega(X)$.
 - (6) $\phi_1 \otimes \phi_2 \leq \phi_1$ and $\phi_1 \otimes \phi_2 \leq \phi_2$.
 - $(7) (\phi_1 \otimes \phi_2) \otimes \phi_3 = \phi_1 \otimes (\phi_2 \otimes \phi_3),$
 - $(8) (\phi_1 \otimes \phi_2) \circ (\phi_1 \otimes \phi_2) \leq (\phi_1 \circ \phi_1) \otimes (\phi_2 \circ \phi_2).$
- (9) Define $\phi_{\top} \in \Omega(X)$ as $\phi_{\top}(1_{\{x\}}) = 1_X, \forall x \in X$. Then $\phi < \phi_{\top}$ for all $\phi \in \Omega(X)$.

Proof. (1) For all $\lambda \in L^X$, we write $\lambda = \bigvee_{z \in X} \lambda(z) \odot$ $1_{\{z\}}$. Thus,

$$\phi(\lambda) = \phi(\bigvee_{z \in X} \lambda(z) \odot 1_{\{z\}})
= \bigvee_{z \in X} \lambda(z) \odot \phi(1_{\{z\}})
= \bigvee_{z \in X} \lambda(z) \odot \rho_z.$$

(2) For $\lambda = \bigvee_{z \in X} \lambda(z) \odot 1_{\{z\}}$, we have

$$\begin{array}{ll} \phi_1(\lambda) &= \bigvee_{z \in X} \lambda(z) \odot \phi_1(1_{\{z\}}) \\ &= \bigvee_{z \in X} \lambda(z) \odot \phi_2(1_{\{z\}}) \\ &= \phi_2(\lambda). \end{array}$$

(3) We only show (O3) $\alpha \odot \phi^{-1}(\lambda) = \phi^{-1}(\alpha \odot \lambda)$, for $\lambda \in L^X$.

$$\begin{array}{ll} \phi^{-1}(\alpha\odot\lambda) &= \bigwedge\{\rho\in L^X\mid \phi(\rho^*)\leq (\alpha\odot\lambda)^*\}\\ &= \bigwedge\{\rho\in L^X\mid \alpha\odot\phi(\rho^*)\leq \lambda^*\}\\ &= \bigwedge\{\rho\in L^X\mid \phi(\alpha\odot\rho^*)\leq \lambda^*\}\\ &= \alpha\odot\bigwedge\{\mu\in L^X\mid \phi(\mu^*)\leq \lambda^*\}\\ &= \bigwedge\{\alpha\odot\mu\mid \phi(\mu^*)\leq \lambda^*\} \end{array}$$

Let $\alpha \odot \mu \in L^X$ such that $\phi(\mu^*) \leq \lambda^*$. Since $\alpha \odot (\alpha \odot \mu)$ μ)* $\leq \mu$ * from Lemma 2.3(5) and $\phi \Big(\alpha \odot (\alpha \odot \mu)^* \Big) \leq$ $\phi(\mu^*) \leq \lambda^*$. Hence $\phi^{-1}(\alpha \odot \lambda) \leq \alpha \circ \phi^{-1}(\lambda)$.

Let $\rho \in L^X$ with $\phi(\alpha \odot \rho^*) \leq \lambda^*$. Put $u^* = \alpha \odot \rho^*$. By Lemma 2.3(10),

$$u = u^{**} = (\alpha \odot \rho^*)^* = \alpha \to \rho^{**} = \alpha \to \rho.$$

Hence $\alpha \odot \mu = \alpha \odot (\alpha \to \rho) \leq \rho$. Thus, $\phi^{-1}(\alpha \odot \lambda) \geq$ $\alpha \odot \phi^{-1}(\lambda)$.

Similarly, $\phi_1 \circ \phi_2 \in \Omega(X)$ is easily proved.

- (4) Since $\phi_1(\rho^*) \le \phi_2(\rho^*) \le \lambda^*$, it easily proved.
- (5) (O3) We show $(\phi_1 \otimes \phi_2)(\bigvee_{i \in \Gamma} \mu_i) \leq \bigvee_{i \in \Gamma} (\phi_1 \otimes \phi_i)$ $\phi_2)(\mu_i)$. Suppose

$$(\phi_1 \otimes \phi_2)(\bigvee_{i \in \Gamma} \mu_i) \not \leq \bigvee_{i \in \Gamma} (\phi_1 \otimes \phi_2)(\mu_i)$$

$$= \bigvee_{i \in \Gamma} \Big(\bigwedge \{ \phi_1(\lambda_i) \odot \phi_2(\rho_i) \mid \lambda_i \odot \rho_i = \mu_i \} \Big).$$

Since L is a completely distributive lattice, by the definition of $(\phi_1 \otimes \phi_2)(\mu_i)$, for each $i \in \Gamma$, there exist λ_i, ρ_i with $\mu_i = \lambda_i \odot \rho_i$ such that

$$(\phi_1 \otimes \phi_2)(\bigvee_{i \in \Gamma} \mu_i) \not \leq \bigvee_{i \in \Gamma} \{\phi_1(\lambda_i) \odot \phi_2(\rho_i)\}.$$

On the other hand, since $\bigvee_{i \in \Gamma} \mu_i = (\bigvee_{i \in \Gamma} \lambda_i) \odot (\bigvee_{i \in \Gamma} \rho_i)$ from (L4),

$$(\phi_{1} \otimes \phi_{2})(\bigvee_{i \in \Gamma} \mu_{i}) \leq \phi_{1}(\bigvee_{i \in \Gamma} \lambda_{i}) \odot \phi_{2}(\bigvee_{i \in \Gamma} \rho_{i})$$

$$= \left(\bigvee_{i \in \Gamma} \phi_{1}(\lambda_{i})\right) \odot \left(\bigvee_{i \in \Gamma} \phi_{2}(\rho_{i})\right)$$

$$= \bigvee_{i \in \Gamma} \{\phi_{1}(\lambda_{i}) \odot \phi_{2}(\rho_{i})\}.$$

It is a contradiction. Hence the result holds. (O1) and (O3) are easily proved. So, $\phi_1 \otimes \phi_2 \in \Omega(X)$.

- (6) For $\mu = \mu \odot 1_X$, we have $\phi_1(\mu) = \phi_1(\mu) \odot \phi_1(1_X) \ge (\phi_1 \otimes \phi_2)(\mu)$.
- (7) Suppose there exists $\mu \in L^X$ with $(\phi_1 \otimes (\phi_2 \otimes \phi_3))(\mu) \not\leq ((\phi_1 \otimes \phi_2) \otimes \phi_3)(\mu)$. Then there exist μ_i with $\mu = \mu_1 \odot \mu_2$ such that

$$(\phi_1 \otimes (\phi_2 \otimes \phi_3))(\mu) \not\leq (\phi_1 \otimes \phi_2)(\mu_1) \odot \phi_3(\mu_2).$$

By (L5), there exist ρ_1 and ρ_2 with $\mu_1 = \rho_1 \odot \rho_2$ such that

$$(\phi_1 \otimes (\phi_2 \otimes \phi_3))(\mu) \not\leq (\phi_1(\rho_1) \odot \phi_2(\rho_2)) \odot \phi_3(\mu_2).$$

On the other hand, since $(\rho_1 \odot \rho_2) \odot \mu_2 = \rho_1 \odot (\rho_2 \odot \mu_2)$

$$(\phi_1 \otimes (\phi_2 \otimes \phi_3))(\mu) \leq \phi_1(\rho_1) \odot (\phi_2(\rho_2) \odot \phi_3(\mu_2)).$$

It is a contradiction. Thus, $\phi_1 \otimes (\phi_2 \otimes \phi_3) \leq (\phi_1 \otimes \phi_2) \otimes \phi_3$. Similarly, $\phi_1 \otimes (\phi_2 \otimes \phi_3) \geq (\phi_1 \otimes \phi_2) \otimes \phi_3$.

(8) Suppose there exists $\mu \in L^X$ with $(\phi_1 \otimes \phi_2) \circ (\phi_1 \otimes \phi_2)(\mu) \not\leq (\phi_1 \circ \phi_1) \otimes (\phi_2 \circ \phi_2)(\mu)$. Then there exist μ_i with $\mu = \mu_1 \odot \mu_2$ such that

$$(\phi_1 \otimes \phi_2) \circ (\phi_1 \otimes \phi_2)(\mu) \not \leq (\phi_1 \circ \phi_1)(\mu_1) \odot (\phi_2 \circ \phi_2)(\mu_2).$$

But

$$(\phi_1 \otimes \phi_2) \circ (\phi_1 \otimes \phi_2)(\mu)$$

$$\leq (\phi_1 \otimes \phi_2)(\phi_1(\mu_1) \odot \phi_2(\mu_2))$$

$$\leq \phi_1(\phi_1(\mu_1)) \odot \phi_2(\phi_2(\mu_2)).$$

It is a contradiction. Thus, $(\phi_1 \otimes \phi_2) \circ (\phi_1 \otimes \phi_2) \leq (\phi_1 \circ \phi_1) \otimes (\phi_2 \circ \phi_2)$.

(9) Since $\phi(1_{\{x\}}) \leq \phi_{\top}(1_{\{x\}}) = 1_X, \forall x \in X$, we have $\phi \leq \phi_{\top}$ for all $\phi \in \Omega(X)$.

We define a somewhat different aspect in [5], we introduce the notion of (L, \otimes) -uniformities as a view point of the approach using uniform operators defined by Rodabaugh [19].

Definition 3.4 A nonempty subset **U** of $\Omega(X)$ is called a Hutton (L, \otimes) -quasi-uniformity on X if it satisfies the following conditions:

(QU1) If $\phi \leq \psi$ with $\phi \in \mathbf{U}$ and $\psi \in \Omega(X)$, then $\psi \in \mathbf{U}$.

(QU2) For each $\phi, \psi \in \mathbf{U}, \phi \otimes \psi \in \mathbf{U}$.

(QU3) For each $\phi \in \mathbf{U}$, there exists $\psi \in \mathbf{U}$ such that $\psi \circ \psi < \phi$.

The pair (X, \mathbf{U}) is said to be a Hutton (L, \otimes) - quasi-uniform space.

A Hutton (L, \otimes) - quasi-uniform space is said to be a *Hutton* (L, \otimes) -uniform space if it satisfies

(U) For each $\phi \in \mathbf{U}$, there exists $\phi^{-1} \in \mathbf{U}$.

Example 3.5 Let $X = \{x, y, z\}$ be a set and $([0, 1], \odot)$ an biquantale defined by $x \odot y = \max\{0, x+y-1\}$ (ref.[6,10-12,18,24]).

(1) Define $\phi \in \Omega(X)$ as follows:

$$\phi(1_{\{x\}}) = \phi(1_{\{y\}}) = 1_{\{x,y\}}, \ \phi(1_{\{z\}}) = \phi(1_{\{z\}})$$

Since

$$\phi \otimes \phi(1_{\{x\}}) = \phi \otimes \phi(1_{\{y\}}) = 1_{\{x,y\}}, \phi \otimes \phi(1_{\{z\}}) = 1_{\{z\}},$$

by Lemma 3.3(2), $\phi \otimes \phi = \phi$. We have $\phi \circ \phi = \phi$ because

$$\phi\circ\phi(1_{\{x\}})=\phi\circ\phi(1_{\{y\}})=1_{\{x,y\}}, \phi\circ\phi((1_{\{z\}}))=1_{\{z\}}.$$

Since

$$\phi^{-1}(1_{\{x\}}) = \phi^{-1}(1_{\{y\}}) = 1_{\{x,y\}}, \phi^{-1}(1_{\{z\}}) = 1_{\{z\}},$$

Hence $\phi^{-1} = \phi$.

(2) Define $\mathbf{U} = \{ \psi \in \Omega(X) \mid \phi \leq \psi \}$. Then \mathbf{U} is a Hutton (L, \otimes) -uniformity on X from (1).

We define an (L, \odot) -uniformity in a sense Lowen [17] and Höhle [7-8] based on powersets of the form $L^{X \times X}$.

Definition 3.6 Let $E(X \times X) = \{u \in L^{X \times X} \mid u(x,x) = 1\}$ be a subset of $L^{X \times X}$. A nonempty subset **D** of $E(X \times X)$ is called an (L, \odot) -quasi-uniformity on X if it satisfies the following conditions:

(QD1) If $u \le v$ with $u \in \mathbf{D}$ and $v \in E(X \times X)$, then $v \in \mathbf{D}$.

(QD2) For each $u, v \in \mathbf{D}$, $u \odot v \in \mathbf{D}$.

(QD3) For each $u \in \mathbf{D}$, there exists $v \in \mathbf{D}$ such that $v \circ v \leq u$ where

$$v\circ v(x,y)=\bigvee_{z\in X}(v(x,z)\odot v(z,y)).$$

The pair (X, \mathbf{D}) is said to be an (L, \odot) - quasi-uniform space.

An (L, \odot) -quasi-uniform space is said to be an (L, \odot) -uniform space if it satisfies

(D) For each $u \in \mathbf{D}$, there exists $u^s \in \mathbf{U}$ where $u^s(x,y) = u(y,x)$.

Definition 3.7 A function $u: X \times X \to L$ is called an \odot -quasi-equivalence relation iff it satisfies the following properties

(E1) u(x, x) = 1 for all $x \in X$.

(E2) $u(x,y) \odot u(y,z) \le u(x,z)$.

An \odot -quasi-equivalence relation is called an \odot -equivalence relation on X if it satisfies

(E) u(x, y) = u(y, x).

We denote $u^2=u\odot u$ and $u^{n+1}=u^n\odot u$ for each $u\in L^{X\times X}$.

Theorem 3.8 Let $u: X \times X \to L$ be an \odot -equivalence relation. We define a mapping \mathbf{D}_u as follows:

$$\mathbf{D}_u = \{ v \in E(X \times X) \mid \exists n \in N, u^n \le v \}.$$

Then \mathbf{D}_n is an (L, \odot) -uniformity on X.

Proof. (QD1) Obvious. (QD2) Let $v_i \in \mathbf{D}_u$ for i = 1, 2. There exist $n_i \in N$ such that $u^{n_i} \leq v_i$. Hence $n_1 + n_2 \in N$ such that $u^{n_1+n_2} \leq v_1 \odot v_2$.

(QD3). For $v \in \mathbf{D}_u$, there exists $n \in N$ such that $u^n \leq v$. Since u is an \odot -equivalence relation, $u \circ u \leq u$. We have $(u \circ u)^2 \ge u^2 \circ u^2$ because

$$\begin{aligned} &(u \circ u)^2(x,y) & \Gamma(u)(\bigvee_i \lambda_i)(y) &= \\ &= \bigvee_{z \in X} \left(u(x,z) \odot u(z,y) \right) \odot \bigvee_{w \in X} \left(u(x,w) \odot u(w,y) \right) &= \\ &= \bigvee_{z \in X} \bigvee_{w \in X} \left(u(x,z) \odot u(z,y) \right) \odot \left(u(x,w) \odot u(w,y) \right) \end{aligned} \tag{O3) is easily proved.} \\ &\geq \bigvee_{z \in X} \left(u(x,z) \odot u(z,y) \odot u(x,z) \odot u(z,y) \right) & \text{By (O2), } \Gamma(u) \text{ has a r} \\ &\geq \bigvee_{z \in X} \left(u^2(x,z) \odot u^2(z,y) \right) & \Gamma(u_1)(1_{\{z\}})(y) = u_1(z,y) \end{aligned}$$

We obtain $u^n \circ u^n \leq (u \circ u)^n \leq u^n \leq v$ and $u^n \in \mathbf{D}_u$. (D) For $v \in \mathbf{D}_u$, there exists $n \in N$ such that $u^n \leq v$. Since u is an \odot -equivalence relation, $u^s = u$. Then $u^n = (u^s)^n = (u^n)^s \le v^s$ implies $v^s \in \mathbf{D}_u$.

Example 3.9 Let X and $(L = [0, 1], \odot)$ be defined as in Example 3.5. Let $u \in E(X \times X)$ be an \odot -fuzzy quasiequivalence relation on X as

$$u(x,x) = u(y,y) = u(z,z) = u(x,y) = 1,$$

 $u(y,x) = 0.7, u(y,z) = u(z,y) = 0.6,$
 $u(x,z) = u(z,x) = 0.5.$

Then

$$u^3(x,x)=u^3(y,y)=u^3(z,z)=u^3(x,y)=1,$$

$$u^3(y,x)=u^3(y,z)=u^3(z,y)=u^3(x,z)=u^3(z,x)=0.$$
 Define $\mathbf{D}=\{v\in E(X\times X)\mid u^3\leq v\}.$ Then \mathbf{D} is an (L,\odot) -quasi-uniformity on X but not an (L,\odot) -uniformity on X because $(u^3)^s\not\in\mathbf{D}.$

Theorem 3.10 We define a mapping $\Gamma : E(X \times X) \rightarrow$ $\Omega(X)$ as follows:

$$\Gamma(u)(\lambda)(y) = \bigvee_{x \in X} \lambda(x) \odot u(x,y).$$

Then we have the following properties:

(1) For $u \in E(X \times X)$, $\Gamma(u) \in \Omega(X)$ and $\Gamma(u)$ has a right adjoint mapping $\Gamma^{\leftarrow}(u)$ defined by

$$\Gamma(u)^{\leftarrow}(\lambda) = \bigvee \{ \rho \in L^X \mid \Gamma(u)(\rho) \le \lambda \}.$$

(2) Γ is injective and join preserving map.

(3) Γ has a right adjoint mapping Λ : $\Omega(X) \rightarrow$ $E(X \times X)$ as follows:

$$\Lambda(\phi)(x,y)=\phi(1_{\{x\}})(y).$$
 (4) $\Gamma\circ\Lambda=1_{\Omega(X)}$ and $\Lambda\circ\Gamma=E(X\times X).$

Proof. (1) Γ is well-defined because $\Gamma(u) \in \Omega(X)$ from the following statements:

(O1)
$$\Gamma(u)(\lambda)(x) = \bigvee_{z \in X} \lambda(z) \odot u(z,x) \ge \lambda(x) \odot u(x,x) = \lambda(x)$$
 for all $\lambda \in L^X$.

(O2) $\Gamma(u)$ is join preserving because

$$\begin{array}{ll} \Gamma(u)(\bigvee_{i}\lambda_{i})(y) &= \bigvee_{x \in X}(\bigvee_{i}\lambda_{i}(x)) \odot u(x,y) \\ &= \bigvee_{i}(\bigvee_{x \in X}\lambda_{i}(x) \odot u(x,y)) \\ &= \bigvee_{i}\Gamma(u)(\lambda_{i})(y) \end{array}$$

By (O2), $\Gamma(u)$ has a right adjoint mapping $\Gamma(u)^{\leftarrow}$.

(2) Γ is injective because, for each $1_{\{z\}}$, $\Gamma(u_1)(1_{\{z\}})(y) = u_1(z,y) = u_2(z,y) = \Gamma(u_2)(1_{\{z\}})(y).$ Γ is join preserving because

$$\begin{array}{ll} \Gamma(\bigvee_i u_i)(\lambda)(y) &= \bigvee_{x \in X} \lambda(x) \odot \bigvee_i u_i(x,y) \\ &= \bigvee_i (\bigvee_{x \in X} \lambda(x) \odot u_i(x,y)) \\ &= \bigvee_i \Gamma(u_i)(\lambda)(y) \end{array}$$

(3)

$$\begin{array}{l} \Lambda(\phi)(x,y) \\ = \bigvee \{u(x,y) \mid \Gamma(u)(\lambda(x) \odot 1_{\{x\}})(y) \leq \phi(\lambda(x) \odot 1_{\{x\}})(y)\} \\ = \bigvee \{u(x,y) \mid \lambda(x) \odot u(x,y) \leq \phi(\lambda(x) \odot 1_{\{x\}})(y)\} \\ (\text{ put } \lambda(x) = \alpha) \\ = \bigvee \{u(x,y) \mid u(x,y) \leq \bigwedge_{\alpha} (\alpha \rightarrow \alpha \odot \phi(1_{\{x\}})(y))\} \\ = \bigwedge_{\alpha} \left(\alpha \rightarrow \alpha \odot \phi(1_{\{x\}})(y)\right) \end{array}$$

Since

$$\bigwedge_{\alpha} \left(\alpha \to \alpha \odot \phi(1_{\{x\}})(y) \right)$$

$$\leq \top \to \top \odot \phi(1_{\{x\}})(y) = \phi(1_{\{x\}})(y),$$

we have $\Lambda(\phi)(x,y) \leq \phi(1_{\{x\}})(y)$. Since $\alpha \odot \phi(1_{\{x\}}) \leq$ $\alpha \odot \phi(1_{\{x\}})$, we have

$$\phi(1_{\{x\}})(y) \leq \bigwedge_{lpha} \Big(lpha
ightarrow lpha \odot \phi(1_{\{x\}})(y)\Big) = \Lambda(\phi)(x,y).$$

Hence $\Lambda(\phi)(x,y) = \phi(1_{\{x\}})(y)$.

Furthermore, $\Lambda(\phi) \in E(X \times X)$ from:

$$\Lambda(\phi)(x,x) = \phi(1_{\{x\}})(x) = \top.$$

(4)

$$\begin{split} \Gamma(\Lambda(\phi))(\lambda)(y) &= \bigvee_{x \in X} \lambda(x) \odot \Lambda(\phi)(x,y) \\ &= \bigvee_{x \in X} \left(\lambda(x) \odot \phi(1_{\{x\}})(y) \right) \\ &= \bigvee_{x \in X} \phi(\lambda(x) \odot 1_{\{x\}})(y) \\ &= \phi(\lambda)(y). \end{split}$$

Hence $\Gamma \circ \Lambda = 1_{\Omega(X)}$.

We have $\Lambda \circ \Gamma = 1_{E(X \times X)}$ from:

$$\begin{split} &\Lambda(\Gamma(u))(x,y) = \Gamma(u)(1_{\{x\}})(y) \\ &= \bigvee_{z \in X} (1_{\{x\}}(z) \odot u(z,y)) = u(x,y) \end{split}$$

Example 3.11 Let X and $(L = [0,1], \odot)$ be defined as in Example 3.5. Then $x \to y = \min\{1, 1 - x + y\}$ for each $x, y \in L$. Let $u \in E(X \times X)$ be an \odot -fuzzy quasiequivalence relation on X as

$$u(x, x) = u(y, y) = u(z, z) = u(x, y) = 1,$$

 $u(y, x) = 0.7, u(y, z) = u(z, y) = 0.6,$
 $u(x, z) = u(z, x) = 0.5.$

Then

$$\begin{split} \Gamma(u)(1_x) &= \rho_x, \ \, \rho_x(x) = 1, \rho_x(y) = u(x,y) = 1, \\ \rho_x(z) &= 0.5, \\ \Gamma(u)(1_y) &= \rho_y, \ \, \rho_y(x) = 0.7, \rho_y(y) = 1, \rho_y(z) = 0.6, \\ \Gamma(u)(1_z) &= \rho_z, \ \, \rho_z(x) = 0.5, \rho_z(y) = 0.6, \rho_z(z) = 1. \end{split}$$
 Since

$$\Lambda(\Gamma(u))(z,x) = \Gamma(u)(1_{\{z\}})(x) = u(z,x),$$

by a similar method, we obtain $\Lambda \circ \Gamma(u) = u$ for all $u \in E(X \times X)$.

Theorem 3.12 Let $u, u_1, u_2 \in E(X \times X)$. Then we have the following properties:

- (1) If $u_1 \leq u_2$, $\Gamma(u_1) \leq \Gamma(u_2)$.
- (2) $\Gamma(u_1 \odot u_2) \leq \Gamma(u_1) \otimes \Gamma(u_2)$.
- $(3) \Gamma(1_{\Delta}) = 1_{L^X}.$
- $(4) \Gamma(u)^{-1} = \Gamma(u^s).$
- (5) $\Gamma(u)^{-1}(\lambda \rightarrow \bot) = \Gamma(u)^{\leftarrow}(\lambda) \rightarrow \bot$, for all $\lambda \in L^X$.
 - (6) $\Gamma(u_1 \circ u_2) = \Gamma(u_2) \circ \Gamma(u_1)$.
 - (7) $\Gamma(\alpha \odot u) = \alpha \odot \Gamma(u)$.
 - (8) If u is an \odot -equivalence relation on X, then

$$(\Gamma(u))^{-1} = \Gamma(u^s) = \Gamma(u), \quad \Gamma(u) \circ \Gamma(u) = \Gamma(u).$$

Proof. (1) It is easy from the definition of Γ .

(2) $\Gamma(u_1 \odot u_2) \leq \Gamma(u_1) \otimes \Gamma(u_2)$ from the following: for all $\lambda = \lambda_1 \odot \lambda_2$,

$$\Gamma(u_{1} \odot u_{2})(\lambda_{1} \odot \lambda_{2})(y) = \bigvee_{x \in X} (\lambda_{1} \odot \lambda_{2})(x) \odot (u_{1} \odot u_{2})(x, y) \\ \leq (\bigvee_{x \in X} \lambda_{1}(x) \odot u_{1}(x, y)) \odot (\bigvee_{z \in X} \lambda_{2}(z) \odot u_{2}(z, y)) \Gamma(u^{s})(1_{\{x\}}) = \bigvee_{z \in X} 1_{\{x\}}(z) \odot u^{s}(z, -) = u^{s}(x, -) = u(-, x).$$

$$= \Gamma(u_{1})(\lambda_{1})(y) \odot \Gamma(u_{2})(\lambda_{2})(y).$$

- (3) $\Gamma(1_{\Delta})(\lambda)(y) = \bigvee_{x \in X} (\lambda(x) \odot 1_{\Delta}(x,y)) = \lambda(y)$ for all $y \in X$.
- (4) $(\Gamma(u))^{-1} \leq \Gamma(u^s)$ from:

$$\begin{split} &\Gamma(u)\Big(\Gamma(u^s)(\lambda)\to\bot\Big)(y)\\ &=\bigvee_{x\in X}\Big(\Gamma(u^s)(\lambda)\to\bot\Big)(x)\odot u(x,y)\\ &=\bigvee_{x\in X}\Big(\bigvee_{z\in X}\lambda(z)\odot u(-,z))\to\bot\Big)(x)\odot u(x,y)\\ &=\bigvee_{x\in X}\bigwedge_{z\in X}\Big(\lambda(z)\odot u(x,z)\to\bot\Big)\odot u(x,y)\\ &\leq\bigvee_{x\in X}\Big(\lambda(y)\odot u(x,y)\to\bot\Big)\odot u(x,y)\\ &\leq\lambda(y)\to\bot \end{split}$$

$$(\Gamma(u))^{-1} \geq \Gamma(u^s)$$
 from:

$$\begin{split} &\Gamma(u)(\rho \to \bot)(y) = \bigvee_{x \in X} (\rho \to \bot)(x) \odot u(x,y) \leq \lambda(y) \to \bot \\ &\Leftrightarrow (\rho \to \bot)(x) \odot u(x,y) \leq \lambda(y) \to \bot \\ &\Leftrightarrow (\rho \to \bot)(x) \leq u(x,y) \to (\lambda(y) \to \bot) \\ &\Leftrightarrow \rho(x) \geq \lambda(y) \odot u(x,y) \\ &\Leftrightarrow \rho(x) \geq \bigvee_{y \in X} \lambda(y) \odot u^s(y,x) \end{split}$$

(5) For all $\lambda \in L^X$, $\Gamma(u)^{-1}(\lambda \to \bot) = \Gamma(u)^{\leftarrow}(\lambda) \to \bot$

$$\begin{array}{ll} \Gamma(u)^{-1}(\lambda \to \bot) &= \bigwedge \{ \rho \in L^X \mid \Gamma(u)(\rho^*) \leq \lambda \} \\ &= \bigvee \{ \rho^* \in L^X \mid \Gamma(u)(\rho^*) \leq \lambda \} \to \bot \\ &= \Gamma(u)^{\leftarrow}(\lambda) \to \bot. \end{array}$$

(6)

$$\Gamma(u_{2})(\Gamma(u_{1})(\lambda))(y)$$

$$= \bigvee_{x \in X} \Gamma(u_{1})(\lambda)(x) \odot u_{2}(x, y)$$

$$= \bigvee_{x \in X} \left(\bigvee_{z \in X} \lambda(z) \odot u_{1}(z, x)\right) \odot u_{2}(x, y)$$

$$= \bigvee_{x \in X} \bigvee_{z \in X} \left(\lambda(z) \odot (u_{1}(z, x) \odot u_{2}(x, y))\right)$$

$$= \bigvee_{z \in X} \left(\lambda(z) \odot \bigvee_{x \in X} (u_{1}(z, x) \odot u_{2}(x, y))\right)$$

$$= \bigvee_{z \in X} \left(\lambda(z) \odot (u_{1} \circ u_{2})(z, y)\right)$$

$$= \Gamma(u_{1} \circ u_{2})(\lambda)(y).$$

- (7) Obvious.
- (8) Since $u \circ u \le u$ and $u^s = u$, it is easily proved.

Example 3.13 Let X, $(L = [0, 1], \odot)$ and $u \in E(X \times X)$ be defined as in Example 3.11. Since $\Gamma(u)^{-1}(1_x) =$ $\bigwedge \{ \rho^* \mid \Gamma(u)(\rho) \leq 1_{\{y,z\}} \}$, then

$$\Gamma(u)^{-1}(1_x) = \left(0.3 \odot 1_{\{y\}} \lor 0.5 \odot 1_{\{z\}}\right) \rightarrow \bot$$

$$\Gamma(u^s)(1_{\{x\}}) = \bigvee_{z \in X} 1_{\{x\}}(z) \odot u^s(z,-) = u^s(x,-) = u(-,x).$$

It follows $\Gamma(u)^{-1}(1_{\{x\}})=\Gamma(u^s)(1_{\{x\}})$. Similarly, we have $\Gamma(u)^{-1}(1_{\{z\}})=\Gamma(u^s)(1_{\{z\}})$ for all $z\in X$. Hence $\Gamma(u)^{-1} = \Gamma(u^s)$.

Theorem 3.14 Let $u: X \times X \to L$ be an \odot -equivalence relation. We define a mapping U_u as follows:

$$\mathbf{U}_u = \{ \phi \in \Omega(X) \mid \exists n \in \mathbb{N}, \ \Gamma(u^n) \le \phi \}.$$

Then \mathbf{U}_u is a Hutton (L, \otimes) -uniformity on X.

Proof. (QU1) Obvious.

(QU2) If $\phi, \psi \in \mathbf{U}_u$, there exist $m, n \in N$ such that $\Gamma(u^m) \leq \phi$ and $\Gamma(u^n) \leq \psi$. Then $\Gamma(u^{m+n}) \leq \Gamma(u^m) \otimes \Gamma(u^n) \leq \phi \otimes \psi$. Hence $\phi \otimes \psi \in \mathbf{U}_u$.

(QU3) For $\phi \in \mathbf{U}_u$, there exists $n \in N$ such that $\Gamma(u^n) \leq \phi$. Since $u^n \circ u^n \leq (u \circ u)^n \leq u^n$, there exists $\Gamma(u^n) \in \mathbf{U}_u$ such that

$$\Gamma(u^n) \circ \Gamma(u^n) = \Gamma(u^n \circ u^n) \le \Gamma((u \circ u)^n) \le \Gamma(u^n) \le \phi.$$

(Ú) For $\phi \in \mathbf{U}_u$, there exists $n \in N$ such that $\Gamma(u^n) \leq \phi$. Then $\phi^{-1} \in \mathbf{U}_u$ because

$$\Gamma(u^n) = \Gamma((u^s)^n) = \Gamma((u^n)^s) = \Gamma(u^n)^{-1} \le \phi^{-1}.$$

Theorem 3.15 Let $\phi, \phi_1, \phi_2 \in \Omega(X)$. Then we have the following properties:

- (1) If $\phi_1 \leq \phi_2$, then $\Lambda(\phi_1) \leq \Lambda(\phi_2)$.
- (2) $\Lambda(\phi_1) \odot \Lambda(\phi_2) = \Lambda(\phi_1 \otimes \phi_2)$.
- (3) $\Lambda(1_{L^X})=1_{\Delta}$.
- (4) $\Lambda(\phi)^s = \Lambda(\phi^{-1})$.
- (5) $\Lambda(\phi_1) \circ \Lambda(\phi_2) = \Lambda(\phi_2 \circ \phi_1)$.
- (6) $\Lambda(\alpha \odot \phi) = \alpha \odot \Lambda(\phi)$.
- (7) If $\phi \circ \phi = \phi$ and $\phi = \phi^{-1}$, then $\Lambda(\phi)$ is an \odot -equivalence relation.

Proof. (1) It is easy from the definition of Λ .

(2) We have $\Lambda(\phi_1) \odot \Lambda(\phi_1) = \Lambda(\phi_1 \otimes \phi_2)$ because

$$\begin{split} (\Lambda(\phi_1) \odot \Lambda(\phi_2))(x,y) &= \phi_1(1_{\{x\}})(y) \odot \phi_2(1_{\{x\}})(y) \\ &= (\phi_1 \otimes \phi_2)(1_{\{x\}})(y). \end{split}$$

- $(3) \Lambda(1_{L^X})(x,y) = 1_{L^X}(1_{\{x\}})(y) = 1_{\{x\}}(y) = 1_{\Lambda}(x,y).$
 - (4) Suppose $\Lambda(\phi)^s(x,y) \not \leq \Lambda(\phi^{-1})(x,y)$. Since

$$\Lambda(\phi)^{s}(x,y) = \Lambda(\phi)(y,x) = \phi(1_{\{y\}})(x)$$
$$\Lambda(\phi^{-1})(x,y) = \phi^{-1}(1_{\{x\}})(y),$$

by the definition of $\Lambda(\phi^{-1})$, there exists λ with $\phi(\lambda^*) \le 1_{\{x\}} \to \bot$ such that

$$\Lambda(\phi)^s(x,y) \not\leq \lambda(y).$$

Since $\phi(\lambda^*) \leq 1_{\{x\}} \to \bot$ implies $\phi(\lambda^*)(x) = \bot$, we have

$$\begin{split} & \Lambda(\phi)^s(x,y) \not \leq \lambda(y) \\ & \Rightarrow \Lambda(\phi)^s(x,y) \not \leq (\phi(\lambda^*)(x) \to \bot) \to \lambda(y) \\ & \Leftrightarrow \Lambda(\phi)^s(x,y) \not \leq \lambda^*(y) \to \phi(\lambda^*)(x) \\ & \text{(by Lemma 2.3(8))} \end{split}$$

Since
$$\lambda^* = \bigvee_{z \in X} \lambda^*(z) \odot 1_{\{z\}}$$
, we have

$$\begin{array}{l} \lambda^*(y) \to \phi(\lambda^*)(x) \\ = \lambda^*(y) \to \bigvee_{z \in X} (\phi(\lambda^*(z) \odot 1_{\{z\}})(x) \\ \geq \lambda^*(y) \to \phi(\lambda^*(y) \odot 1_{\{y\}})(x) \\ \geq \phi(1_{\{y\}})(x). \end{array}$$

Thus,

$$\Lambda(\phi)^s(x,y) \not\leq \phi(1_{\{y\}})(x).$$

It is a contradiction. Hence $\Lambda(\phi)^s \leq \Lambda(\phi^{-1})$.

Suppose $\Lambda(\phi)^s(x,y) \not\geq \Lambda(\phi^{-1})(x,y)$. By the definition of $\Lambda(\phi)^s(x,y)$, there exists $\alpha \in L$ such that

$$\alpha \to \alpha \odot \phi(1_{\{y\}})(x) \not\geq \Lambda(\phi^{-1})(x,y)$$

Since $\alpha \odot \phi(1_{\{y\}}) = \phi(\alpha \odot 1_{\{y\}})$, we have $\phi(1_{\{y\}}) \le \alpha \to \alpha \odot \phi(1_{\{y\}})$. Put $\rho = \left(\alpha \to \alpha \odot \phi(1_{\{y\}})\right) \to \bot$, then $\phi^{-1}(\rho) \le 1_{\{y\}}^*$. Since $\rho = \bigvee_{z \in X} \rho(z) \odot 1_{\{z\}}$. Put $\beta = \rho(x)$. Then

$$\beta \to \beta \odot \phi^{-1}(1_{\{x\}})(y) \le \beta \to 1_{\{y\}}^*(y) = \beta^*$$

It implies

$$\begin{array}{ll} \Lambda(\phi^{-1})(x,y) &= \bigwedge_{\alpha} \left(\alpha \to \alpha \odot \phi^{-1}(1_{\{x\}})(y) \right) \\ &\leq \beta \to \beta \odot \phi^{-1}(1_{\{x\}})(y) \\ &\leq \beta \to 1^*_{\{y\}}(y) \\ &= \beta^* = \alpha \to \alpha \odot \phi(1_{\{y\}})(x). \end{array}$$

It is a contradiction. Hence $\Lambda(\phi)^s \ge \Lambda(\phi^{-1})$.

(5) $\Lambda(\phi_1) \circ \Lambda(\phi_2) \leq \Lambda(\phi_1 \circ \phi_2)$ from:

$$\begin{split} & \left(\Lambda(\phi_1) \circ \Lambda(\phi_2)\right)(x,y) \\ &= \bigvee_z \left\{ \phi_1(1_{\{x\}})(z) \odot \phi_2(1_{\{z\}})(y) \right\} \\ &= \bigvee_z \left(\phi_2(\phi_1(1_{\{x\}})(z) \odot 1_{\{z\}})\right)(y) \\ &= \phi_2 \left(\bigvee_z \phi_1(1_{\{x\}})(z) \odot 1_{\{z\}}\right)(y) \\ &= \phi_2 \circ \phi_1(1_{\{x\}})(y) \end{split}$$

- (6) $\lambda(\alpha \odot \phi)(x,y) = (\alpha \odot \phi(1_{\{x\}}))(y) = \alpha \odot \phi(1_{\{x\}})(y) = \alpha \odot \lambda(\phi)(x,y).$
 - (7) Since $\phi \circ \phi = \phi$ and $\phi = \phi^{-1}$, it is proved from

$$\Lambda(\phi) \circ \Lambda(\phi) = \Lambda(\phi), \Lambda(\phi^{-1}) = \Lambda(\phi)^s = \Lambda(\phi).$$

Theorem 3.16 Let **D** be an (L, \odot) -uniform space. We define a mapping $\mathbf{U_D} \subset \Omega(X)$ as follows:

$$\mathbf{U_D} = \{ \phi \in \Omega(X) \mid \exists u \in \mathbf{D}, \Gamma(u) \le \phi \}.$$

Then U_D is a Hutton (L, \otimes) - uniformity on X.

Proof. (QU1) Obvious. (QU2) Let $\phi_i \in \mathbf{U_D}$ for i = 1, 2. There exists $u_i \in \mathbf{D}$ such that $\Gamma(u_i) \leq \phi_i$. Since

$$\Gamma(u_1 \odot u_2) \leq \Gamma(u_1) \otimes \Gamma(u_2) \leq \phi_1 \otimes \phi_2$$

we have $\phi_1 \otimes \phi_2 \in \mathbf{U_D}$.

(QU3) Let $\phi \in \mathbf{U_D}$. There exists $u \in \mathbf{D}$ such that $\Gamma(u) \leq \phi$. Since \mathbf{D} is an (L, \odot) -uniformity, for $u \in \mathbf{D}$, there exists $v \in \mathbf{D}$ such that $v \circ v \leq u$. Since

$$\Gamma(v) \circ \Gamma(v) = \Gamma(v \circ v) \le \Gamma(u) \le \phi,$$

there exists $\Gamma(v) \in \Omega(X)$.

(U) Let $\phi \in \mathbf{U_D}$. There exists $u \in \mathbf{D}$ such that $\Gamma(u) \leq \phi$. Since \mathbf{D} is an (L, \odot) -uniformity, for $u \in \mathbf{D}$, there exists $u^s \in \mathbf{D}$ such that $\Gamma(u^s) = \Gamma(u)^{-1} \leq \phi^{-1}$ from Lemma 3.3(4). Hence $\phi^{-1} \in \mathbf{U_D}$.

Theorem 3.17 Let U be a Hutton (L, \otimes) -uniformity on X. We define a mapping $\mathbf{D}_{\mathbf{U}} \subset E(X \times X)$ as follows:

$$\mathbf{D}_{\mathbf{U}} = \{ u \in E(X \times X) \mid \exists \phi \in \mathbf{U}, \Lambda(\phi) \le u \}.$$

Then:

- (1) $\mathbf{D}_{\mathbf{U}}$ is an (L, \odot) -uniformity on X.
- (2) $\mathbf{D}_{\mathbf{U}_{\mathbf{D}}} = \mathbf{D}$ and $\mathbf{U}_{\mathbf{D}_{\mathbf{U}}} = \mathbf{U}$.

Proof. (1) (QD2) If $u_i \in \mathbf{D}_{\mathbf{U}}$ for i = 1, 2, then there exist $\phi_i \in \mathbf{U}$ such that $\Lambda(\phi_i) \leq u_i$. Since

$$\Lambda(\phi_1 \otimes \phi_2) = \Lambda(\phi_1) \odot \Lambda(\phi_2) \le u_1 \odot u_2,$$

then $u_1 \odot u_2 \in \mathbf{D}_{\mathbf{U}}$.

(QD3) If $u \in \mathbf{D}_{\mathbf{U}}$, then there exists $\phi \in \mathbf{U}$ such that $\Lambda(\phi) \leq u$. Since \mathbf{U} is a Hutton (L, \odot) -uniformity, for $\phi \in \mathbf{U}$, there exists $\psi \in \mathbf{U}$ such that $\psi \circ \psi \leq \phi$. Since

$$\Lambda(\psi) \circ \Lambda(\psi) = \Lambda(\psi \circ \psi) \le \Lambda(\phi) \le u$$

then $\Lambda(\psi) \in \mathbf{D}_{\mathbf{U}}$.

- (D) If $u \in \mathbf{D}_{\mathbf{U}}$, then there exists $\phi \in \mathbf{U}$ such that $\Lambda(\phi) \leq u$. Since \mathbf{U} is a Hutton (L, \odot) -uniformity, for $\phi \in \mathbf{U}$, there exists $\phi^{-1} \in \mathbf{U}$ such that $\Lambda(\phi^{-1}) = \Lambda(\phi)^s \leq u^s$. Thus, $u^s \in \mathbf{D}_{\mathbf{U}}$.
- (2) Let $u \in \mathbf{D}_{\mathbf{U_D}}$. Then there exists $\phi \in \mathbf{U_D}$ such that $\Lambda(\phi) \leq u$. Since $\phi \in \mathbf{U_D}$, there exists $v \in \mathbf{D}$ such that $\Gamma(v) \leq \phi$. Since $v = \Lambda(\Gamma(v)) \leq u$, then $u \in \mathbf{D}$. Hence $\mathbf{D}_{\mathbf{U_D}} \subset \mathbf{D}$. Let $u \in \mathbf{D}$. Then $\Gamma(u) \in \mathbf{U_D}$. Also, $u = \Lambda(\Gamma(u)) \in \mathbf{D}_{\mathbf{U_D}}$. Similarly, we prove $\mathbf{U_{D_U}} = \mathbf{U}$.

Example 3.18 Let $\mathbf{U} = \{ \psi \in \Omega(X) \mid \phi \leq \psi \}$ be defined as in Theorem 3.5. We obtain $\mathbf{D}_{\mathbf{U}} = \{ u \in E(X \times X) \mid \Lambda(\phi) \leq u \}$. Since $\phi \circ \phi = \phi$ and $\phi^{-1} = \phi$, by Theorem 3.15(7), $\Lambda(\phi)$ is an \odot -equivalence relation such that

$$\Lambda(\phi)(x,y) = \phi(1_{\{x\}})(y) = 1_{\{x,y\}}(y) = 1,$$

$$\Lambda(\phi)(x,x) = 1, \ \Lambda(\phi)(x,z) = 0$$

$$\Lambda(\phi)(y,x) = 1$$
, $\Lambda(\phi)(y,y) = 1$, $\Lambda(\phi)(y,z) = 0$

$$\Lambda(\phi)(z,x) = 0, \ \Lambda(\phi)(z,y) = 0, \ \Lambda(\phi)(z,z) = 1$$

Furthermore, $\Lambda(\phi) \circ \Lambda(\phi) = \Lambda(\phi)$, $\Lambda(\phi^{-1}) = \Lambda(\phi)^s = \Lambda(\phi)$ and $\Lambda(\phi) \odot \Lambda(\phi) = \Lambda(\phi \otimes \phi) = \Lambda(\phi)$. Hence $\mathbf{D}_{\mathbf{U}}$ is an (L, \odot) -uniformity on X and $\mathbf{U}_{\mathbf{D}_{\mathbf{U}}} = \mathbf{U}$.

References

- [1] G. Artico, R. Moresco, Fuzzy proximities and totally bounded fuzzy uniformities, J. Math. Anal. Appl., 99 (1984), 320–337.
- [2] G. Artico, R. Moresco, Fuzzy proximities according with Lowen fuzzy uniformities, Fuzzy Sets and Systems, 21 (1987), 85–98.
- [3] M. H. Burton, The relationship between a fuzzy uniformity and its family of α -level uniformities, Fuzzy Sets and Systems, **54** (1993), 311–316.
- [4] J. Gutiérrez García, I. Mardones Pérez, M.H. Burton The relationship between various filter notions on a GL-monoid, J. Math. Anal. Appl., 230 (1999), 291-302.
- [5] J. Gutiérrez García, M. A. de Prade Vicente, A.P. Šostak, A unified approach to the concept of fuzzy L-uniform spaces, Chapter 3 in [15], 81–114.
- [6] P. Hájek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht (1998).
- [7] U. Höhle, *Probabilistic uniformization of fuzzy uniformities*, Fuzzy Sets and Systems **1** (1978), 311–332.
- [8] U. Höhle, Probabilistic topologies induced by L-fuzzy uniformities, Manuscripta Math., 38 (1982), 289–323.
- [9] U. Höhle, Many valued topology and its applications , Kluwer Academic Publisher, Boston, (2001).
- [10] U. Höhle, E. P. Klement, *Non-classical logic and their applications to fuzzy subsets*, Kluwer Academic Publisher, Boston, 1995.
- [11] U. Höhle, S. E. Rodabaugh, Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, Volume 3, Kluwer Academic Publishers, Dordrecht (1999).
- [12] U. Höhle, A. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, Chapter 3 in [11], 123–272.
- [13] B. Hutton, Uniformities on fuzzy topological spaces, J. Math. Anal. Appl., 58 (1977), 559–571.
- [14] A. K. Katsaras, Fuzzy quasi-proximities and fuzzy quasi-uniformities, Fuzzy Sets and Systems, 27 (1988), 335–343.
- [15] W. Kotzé, *Uniform spaces*, Chapter 8 in [11], 553-580.
- [16] Liu Ying-Ming, Luo Mao-Kang, Fuzzy topology, World Scientific Publishing Co., Singapore, 1997.

- [17] R. Lowen, *Fuzzy uniform spaces*, J. Math. Anal. Appl., **82** (1981), 370–385.
- [18] S. E. Rodabaugh, E. P. Klement, *Toplogical And Algebraic Structures In Fuzzy Sets*, The Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic 20, Kluwer Academic Publishers, (Boston/Dordrecht/London) (2003).
- [19] S. E. Rodabaugh, Axiomatic foundations for uniform operator quasi-uniformities, Chapter 7 in [4], 199–233.
- [20] S. K. Samanta, Fuzzy proximities and fuzzy uniformities, Fuzzy Sets and Systems, **70** (1995), 97–105.
- [21] A. P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo 2 Ser II, 11 (1985), 89–103.
- [22] A. P. Šostak, *Basic structures of fuzzy topology*, J. of Math. Sciences, **78**, no 6 (1996), 662–701.
- [23] A. P. Šostak, Fuzzy syntopogeneous structures, Quaestiones Mathematicae, **20** (1997), 431–461.

- [24] E. Turunen, *Mathematics Behind Fuzzy Logic*, A Springer-Verlag Co., 1999.
- [25] M. S. Ying, A new approach for fuzzy topology(I), Fuzzy Sets and Systems, **39** (1991), 303–321.
- [26] M. S. Ying, Fuzzifying uniform spaces, Fuzzy Sets and Systems, 53 (1993), 93-104.

Yong Chan Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1984 and 1991, respectively. From 1991 to present, he is a professor in the Department of Mathematics, Kangnung University. His research interests are fuzzy topology and fuzzy logic.

Young Sun Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1985 and 1991, respectively. From 1988 to present, he is a professor in the Department of Applied Mathematics, Pai Chai University. His research interests are fuzzy topology and fuzzy logic.