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Abstract

Electrical resistance tomograpy (ERT) maps resistivity values of the soil subsurface and characterizes buried objects. The
characterization includes location, size, and resistivity of buried objects. In this paper, truncated least squares (TLS) is presented
for the solution of the ERT image reconstruction. Results of numerical experiments in ERT solved by the TLS approach is
presented and compared to that obtained by the Gauss-Newton method.

Key Words : Electrical resistance tomography, Inverse problem, Nondestructive imaging, Gauss-Newton method, TLS method

1. Introduction

The definition of a ground electrode is "a conductor or
group of conductors in intimate contact with the earth for the
purpose of providing a connection with the soil". This defi-
nition does not refer to an actual ohm resistance value of the
electrode. The resistance value is determined by the resistivity
of soil with which these electrodes are in contact. As in the
case of ground water, the current must pass through the soil
to the assumed earth potential of 0.Q. When an object is
grounded, it is then forced to assume the same zero potential
as the earth. If the potential of the grounded object is higher
or lower, current will pass through the grounding connection
until the potential of the object and earth are the same. The
earth electrode is that connection path from the equipment to
the earth. The resistance of the electrode, measured in ohms,
determines how quickly and at what potential energy is
equalized. Hence, grounding is necessary to maintain an ob-
ject’s potential equal to that of the earth’s [1].

The soil is the dynamic conductor for steady-state, natural,
and man-made fault currents. Most soils naturally contain
varying amounts of electrolytes that conduct electricity. As a
result, the addition of moisture will enhance or reduce the
conductive properties. In general, however, the greater the
moisture  contents in soil, the lower the resistivity.
Temperature, like moisture, can have a significant impact on
resistivity. Soil resistivity varies with temperature, especially
when reaching 0 °C (the moisture in the soil freezes and the
resistivity increases by almost three times its unfrozen value).

To determine the conductivity of the soil, a four-point
ground meter is utilized. This test requires the user to place
four equally spaced auxiliary probes into the earth to de-
termine the actual soil resistance, traditionally in ohms-cm.
This test must take place around the entire area to determine
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the soil value at all locations. This test is done at different
spacing, 5 to 40 feet, to determine the resistance value at var-
ious depths. This knowledge will aid in the design and im-
plementation of the correct ground system to meet the partic-
ular site requirements [2]. Soil values can range from 500
2 cm with large amounts of electrolytes to over 1 million
2 om in sandy dry soil.

Electrical Resistance Tomography (ERT) or, more generally
electrical impedance tomography, is receiving an increasing in-
terest from the scientific and industrial community aiming to
develop a cheap and fast inspection tool for industrial applica-
tions [3]. Many applications of ERT have also been found in
the geophysical field because the electrical resistivity is one of
the most variables of physical properties in the subsurface [4].
The purpose of nondestructive ERT systems is to visualize in-
ternal regions of the object by means of external electrodes.
Due to varying resistivities of internal materials, electric cur-
rent passed through the object results in voltage changes
measured on the surface. The performance of an ERT system
can be stated in terms of spatial resolution of resistivity dis-
tribution, resistivity contrast and some other factors.

The majority of existing procedures for reconstructing re-
sistivity distribution proved by electrical fields have been pri-

“marily based on linearized inversion techniques such as those

used in diffraction or diffusion tomography. A general proce-
dure to reconstruct the resistivity distribution consists of mini-
mizing a quadratic cost function that emphasizes the sum of
squared differences between measured and modeled data.
Because in most cases the relationship between the property
distribution function and the modeled data is nonlinear, the
minimization is performed with a nonlinear search technique
constructed by way of choosing a suitable number of iter-
ations which eventually trace the road toward an extreme val-
ue of the cost function. The way this search is performed is
usually a compromise between efficiency of the computations
and stability of the method. A most common approach is re-
ferred to as the Gauss-Newton method, in which only first-or-
der variations of the modeled data with respect to a variation
in model parameters, the Jacobian or sensitivity matrix, is

47



International Journal of Fuzzy Logic and Intelligent Systems, vol. 6, no. 1, March 2006

computed at each iteration. Ill-conditioning, however, degrades
the performance of the Gauss-Newton method for data con-
taminated with measurement error.

The sensitivity matrix is a complicated function of electric
current, voltage and the unknown resistivity distribution.
Improving the conditioning of the matrix by choosing a meas-
urement method for the resistivity distribution is very difficult
task since no explicit relationship can be seen. As an alter-
native, the regularization method is usually used to improve
its conditioning [5]. The performance of the regularization
method is closely related to the smoothing coefficient. A large
coefficient distorts the information, while a small one has little
effect.

In this paper, we present truncated least squares (TLS) ap-
proach for the ERT image reconstruction of subspace object.
We begin our discussion with a review of finite element
method (FEM) to solve 2D dc resistivity problems. The for-
ward modeling is used for predicting apparent resistivities,
which would be obtained on the surface of the sample. We
then describe our inversion algorithm to analyze ERT
measurements. Results of numerical experiments in ERT
solved by the TLS approach is presented and compared to that
obtained by the Gauss-Newton method. Finally, we discuss the
performance of this approach through inverting synthetic data,

2. Image Reconstruction Using Electrical
Resistance Tomography

The numerical algorithm used to convert the electrical
measurements at the boundary to a resistivity distribution is
described here. The algorithm consists of iteratively solving
the forward problem and updating the resistivity distribution as
dictated by the formulation of the inverse problem. The for-
ward problem of ERT calculates boundary potentials with the
given electrical resistivity distribution, and the inverse problem
of ERT takes potential measurements at the boundary to up-
date the resistivity distribution.

2.1 The forward preblem

The application of FEM to a 2D dc resistivity problem is
thoroughly discussed in Tang and Yang [6]. Its main advant-
age as compared with other numerical methods is that compli-
cated geometries, general boundary conditions, and spatially
variable or non-linear material properties can be handled rela-
tively easily. Furthermore, it does not suffer from a singularity
problem at the source point in resistivity modeling [7], as the
source singularity is effectively smoothed out by minimizing
an integral-formed functional. For completeness, the method is
briefly outlined here. The partial differential equation govern-
ing the behavior of electric potential is described by Poisson's
equation:

-V-(—})Vu)=v-js 1

where p is the electrical resistivity ( 2m), w« is the poten-
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tial (V), and J; the impressed current source (A). The compu-
tation of the potential w(x,y) for the given resistivity dis-
tribution p(x, y) and boundary condition is called the forward
problem. The numerical solution for the forward problem can
be obtained using the FEM. In the FEM, the object area is
discretized into small elements having a node at each corner.
It is assumed that the resistivity distribution is constant within
an element. The potential at each node is calculated by dis-
cretizing (1) into

KU =1, 2

where U, is ‘the vector of voltages at the FEM nodes and
the electrodes, I. the vector of injected current patterns and
the matrix K is a functions of the unknown resistivities.

2.2 The inverse problem

The inverse problem, also known as the image re-
construction, consists in reconstructing the resistivity dis-
tribution p(x,y) from potential differences measured on the
boundary of the object. Ideally, knowing the potential on the
whole boundary makes the correspondence between the re-
sistivity distribution and the potential biunique. The relatively
simple situation depicted so far does not hold exactly in the
real world. The methods used for solving the ERT problem
search for an approximate solution, i.e., for a resistivity dis-
tribution minimizing some sort of residual involving the meas-
ured and calculated potential values. From a mathematical
point of view, the ERT inverse problem consists in finding
the coordinates of a point in a M-dimensional hyperspace,
where M is the number of discrete elements whose union
constitutes the tomographic section under consideration. In the
past, several ERT image reconstruction algorithms for the cur-
rent injection method have been developed by various authors.
To reconstruct the resistivity distribution inside the object, we
have to solve the nonlinear ill-posed inverse problem.
Regularization techniques are needed to weaken the ill-posed-
ness and to obtain stable solutions.

A nonlinear inverse problem is generally solved by iter-
atively minimizing the discrepancy between data 4 and the
model response A p), normalized by the standard deviations
g; of the data

n di— ; -2 .
o, =Z(—{L")) =I(D(d—ADI & = 0% 3
where D= diag(e;!). Multi-dimensional problems are

generally ill-posed considering data errors. Therefore, one has
to introduce regularizing constraints like smoothness [8] or
a-priori-information [9]. This can be accomplished by addition-
ally minimizing a semi-norm ||C(o— py)ll 5, weighted by a
regularization parameter A

O =0,+10,

—lDtd—ADI & +alco—opn 2 @

The matrix C represents the expectations to the model,
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e.g., smoothness constraints. , is the reference or a-priori
model. The application of the Gauss-Newton method leads to
an iterative scheme p,,;=p,+ 4o, solving the regularized

normal equations

((DS) "DS+AiCTC) - 4o,

=(DS) TD(d~Ro ) ~iCTClp mpy O

Note that for a local regularization scheme effecting the
model update Jo instead of the model o the latter term
vanishes. The Jacobian or sensitivity matrix S contains the
partial derivatives of the model response with respect to the
model parameters

_ afi( 0)

Sii_ ap/_ (6)

The Jacobian matrix Se R ¥V is a full matrix, whereas the
matrices De R™Y and Ce R are generally sparse. The
vectors have the dimensions peR™ and ¢4 fep”. With
3= DS, the equation (5) can be written using generalized in-

verse matrices §' and C°
Apk='S*D(d—f(p k))_clr Clp k“Po) (7

ST=(ST54+iCcTC)"'Z T and ' = A5 T
S+ AC TC) L. Furthermore, note that 5 7S+ Cc7C =7 .

The data are superposed by the response of the true model
© e and the noise »

where

d= /{p true) +n (8)

Assuming in the g% iteration the model p, is already
close to the true model, a linearized Taylor expansion of

Koy yields
d=f(,0 k)'f‘S(P tme_pk)+n (9)

By insertion of d—Afp,) from equation (9) into equation
(7), we obtain for p.,= p,

Pex =04+ S S0 = 0)—C" Nop—p)+3 " Dn

=RM,0,M—(I—RM)p0+S*Dn (10)

The model estimate p,, is constructed by the true model
and the starting model and contaminated by noise effects. The
matrix R¥=T3'3F combining the procedures of measure-
ment and inversion is called resolution matrix. It serves as a
kernel function transferring the reality into our mode! estimate
and can be calculated using the generalized singular value de-
composition [11]. Alternatively, the model resolution can be ap-
proximated by conjugate gradient techniques [12]. The operation
of ERT algorithm is described in the flowchart of Fig. 1.
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Fig. 1. Flowchart of ERT algorithm

2.3 The truncated least squares algorithm

In every iteration step % , the linearized subproblem (5) to

be solved reads
((DS) "DS+ACTC) - 4o,
=(DS) "D(d— Ko {—ACTC(o 4~ py)}

Note that for local regularization schemes the term within
{ } vanishes in the above equation. The solution 2p, de-
S,D,C and the
ady=d—-fp, and p,—py. The equation can be in-
terpreted as solution of Ax=DSAp,=Dad,=b in a
weighted least squares sense. In the following equation solvers
are presented solving Ax=5 for x in least squares senses.

For small-scale systems the normal equations can be solved
by matrix inversion of the left hand side matrix, which is al-
ways possible for A>(, by appropriate methods like Gaussian
elimination or QR decomposition. In multidimensional in-
version, the number of model parameter and data are quite
large, which prohibits the use of direct inversion from both
computer time and memory usage point of view. Hence, an
approximate solution is sought using iterative methods.

The conjugate gradient method derived by Hestenes and
Stiefel [12] is widely used for iteratively solving large-scale
systems of equations Ax= 5. Since in every iteration only
one matrix vector product has to be calculated, it is primarily

pends on the matrices vectors

used for sparse A as arising in the discretization of partial
differential equations. However, conjugate gradients are not re-
stricted to sparse systems and can also be applied to the nor-
mal equations

Low-frequency components of the solution tend to converge
faster than high-frequency parts in Krylov subspace methods.
This can be used for an implicit regularization algorithm
called truncated least squares (TLS) algorithm {13]. Assume a
Marquardt type of regularization resulting in the damped not-
mal equations

(ATDTDA+AC TOx=A "D Db{— AC TC(p,—py)} (11)

Let z be the residual of the basis equation z= D(Ax— b)
and » denote the residual of the equation to be solved
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r=ATDTIXAx—b)—AC "Cx=A "z—AC "Cx. Then, the
solution of equation (11) is described in the following TLS
algorithm.

The TLS algorithm
k={
zo=D(Ax,—b)
po=7r;=ATDTz2—2C7Cx,
while k<% . do
qr+1=DAD
@ _ Il 7’k” 2
k+1 q£q21,+/1ﬁfc TCp?
X pp1=% gt @ pr1D s
B pr1= R Apr1d
7 kr1=DAz 41, —AC TCx 4

_ 7l 2
L P
Drir1=Vpr1t Brv1bs
=k+1

end while

3. Computer Simulation

The proposed TLS algorithm has been tested by comparing
its results for numerical simulations with those obtained by
Gauss-Newton method. Fig. 2 shows the synthetic model in-
vestigated in this paper. It is equally discretized in x from -1
to 42m and in y from 0 to 6m in block sizes of Imx1m and
consists of bodies with resistivities of 50 and 200 Qs within
a homogenecous background of 100 (. Model parameters
and data are the logarithms of the cell resistivities and the ap-
parent resistivities, respectively. Table 1 shows the electrode
arrangements investigated. A Wenner data set is simulated re-
sulting in 273 single data.
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Fig. 2. Model parameterization and synthetic model consisting
of two bodies of 50 Qm or 200 Qm in a homogeneous

half-space of 100 Qm.

Table 1. Definition of data sets

Variable Value
Electode Arrangement Wenner(CCPP)
Number of electrodes 41

Position of first electrode -1m
Electrode spacing 1m
Separation n 6

For a Wenner data set, the TLS and two Gauss-Newton al-
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gorithms are compared. Fig. 3 shows the inversion results of
the numerical simulation for an assumed 3% noise data and a
ImV  voltage resolution at 100mV current. The two
Gauss-Newton schemes with fixed regularization ( A= 3() and
L-curve produce noise artifacts from the third term of the
right hand side of equation (10). The inversion result using
TLS algorithm yields superior resolution quality and matches
the synthetic model very well near boundaries.
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Fig. 3. Inversion results for TLS and two Gauss- Newton
schemes using Wenner data set.

4. Conclusion

In this paper, an ERT image reconstruction method based
on TLS approach was presented to improve the spatial
resolution. A technique based on TLS algorithm was devel-
oped for the solution of the ERT inverse problem and superior
result. The crucial point in nonlinear inversion is the choice of
the regularization parameter, which strongly influences reso-
lution properties and thus it has to be chosen carefully.
Furthermore, the exploitation of a priori knowledge will pro-
duce very good reconstructions.
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