Controllability for the Nonlinear Fuzzy Control System with Nonlocal Initial Condition in ${\cal E}_N^n$

Bu Young Lee¹, Dong Gun Park¹, Gyu Tak Choi² and Young Chel Kwun¹

 DEPARTMENT OF MATHEMATICS, DONG-A UNIVERSITY, BUSAN 604-714, KOREA
 DEPARTMENT OF INDUSTRIAL ENGINEERING, KYUNGNAM COLLEGE OF INFORMATION & TECHNOLOGY, BUSAN 617-701, KOREA

Abstract

In this paper we study the exact controllability for the nonlinear fuzzy control system with nonlocal initial condition in E_N^n by using the concept of fuzzy number of dimension n whose values are normal, convex, upper semicontinuous and compactly supported surface in R^n . E_N^n be the set of all fuzzy numbers in R^n with edges having bases parallel to axis X_1, X_2, \dots, X_n .

Key words: fuzzy number of dimension n, nonlinear fuzzy control system, nonlocal controllability

1. Introduction

Many authors have studied several concepts of fuzzy systems.

Kaleva[2] studied the existence and uniqueness of solution for the fuzzy differential equation on E^n where E^n is normal, convex, upper semicontinuous and compactly supported surface in \mathbb{R}^n .

Seikkala[10] proved the existence and uniqueness of fuzzy solution for the initial value problem on E^1 .

Subrahmanyam and Sudarsanam [11] studied fuzzy volterra - integral equation.

Park etal.[9] are proved the existence and uniqueness of fuzzy solution for the nonlinear fuzzy differential equation on E_N^n with nonlocal initial condition.

Kwun etal.[6] are studied controllability for the nonlinear fuzzy control system on E_N^n , where E_N^n be the set of all fuzzy numbers in with edges having bases parallel to axis X_1, X_2, \cdots, X_n . For example E_N^2 be the set of all fuzzy pyramidal numbers in R^2 with edges having rectangular bases parallel to the axis X_1 and X_2 .

Manuscript received Feb. 28, 2006; revised Mar. 10, 2006

Corresponding Author: Young Chel Kwun

This paper was supported by Dong-A University Research Fund in 2002.

The purpose of this paper is to investigate the exact controllability of the nonlinear fuzzy control system in E_N^n .

Let E_N^n be the set of all fuzzy numbers in \mathbb{R}^n with edges having bases parallel to axis X_1, \dots, X_n .

For example, E_N^2 be the set of all fuzzy pyramidal numbers in \mathbb{R}^2 with edges having rectangular bases parallel to the axis X_1 and X_2 ([6]).

We consider the exact controllability for the following nonlinear fuzzy control system with nonlocal initial condition:

(F.C.S).
$$\begin{cases} \dot{x}(t) = a(t)x(t) + f(t, x(t)) + u(t), \\ x(0) + g(t_1, t_2, \dots, t_p, x(\cdot)) = x_0, \\ \dots \in \{t_1, t_2, \dots, t_p\} \end{cases}$$

where $a:[0,T]\to E_N$ is fuzzy coefficient, initial value $x_0\in E_N^n$. $f:[0,T]\times E_N^n\to E_N^n$ and $g:[0,T]^p\times E_N^n\to E_N^n$ are nonlinear function and $u(t)\in E_N^n$ is control function.

2. Properties of fuzzy numbers

We consider a fuzzy graph $G\subset R^n$ that is a functional fuzzy relation in R^n such that its membership function $\mu_G(x_1,\cdots,x_n)\in[0,1],\ (x_1,\cdots,x_2)\in R^n$ has the following properties:

1. For all
$$x_i \in R, \ (i = 1, \dots, k - 1, k + 1, \dots, n),$$

$$\mu_G(x_1,\cdots,x_k,\cdots,x_n)\in[0,1]$$

is a convex membership function.

2. For all $\alpha \in [0,1]$,

$$\{(x_1,\cdots,x_n)\in R^n:\mu_G(x_1,\cdots,x_n)=\alpha\}$$

is a convex set.

3. There exists $(x_1, \dots, x_n) \in \mathbb{R}^n$,

$$\mu_G(x_1,\cdots,x_n)=1.$$

If the above conditions are satisfied, the fuzzy subset G is called a fuzzy number of dimension n.

The first projection of G is

$$\bigvee_{\{x_2,\dots,x_n\}}\mu_G(x_1,\dots,x_n)=\mu_{A_1}(x_1),$$

the second projection of G is

$$\vee_{\{x_1,x_3,\cdots,x_n\}}\mu_G(x_1,\cdots,x_n)=\mu_{A_2}(x_2)$$

and the i-th projection of G is

$$\bigvee_{\{x_1,\dots,x_{i-1},\dots,x_{i+1},\dots,x_n\}} \mu_G(x_1,\dots,x_n) = \mu_{A_i}(x_i),$$

where $i = 3, \dots, n$.

We denote by fuzzy number in E_N^n

$$A=(a_1,a_2,\cdots,a_n),$$

where a_i is projection of A to axis X_i , $(i = 1, \dots, n)$. And a_i , $(i = 1, \dots, n)$ is fuzzy number in R.

The α -level set of fuzzy number in E_N^n is defined by

$$[A]^{\alpha} = \{(x_1, \dots, x_n) \in \mathbb{R}^n : (x_1, \dots, x_n) \in \prod_{i=1}^n [a_i]^{\alpha}\},\$$

where notation \prod is the Cartesian product of sets.

Let A and B in E_N^n , for all $\alpha \in (0, 1]$,

$$(2.1) A = B \iff [A]^{\alpha} = [B]^{\alpha}.$$

(2.2)
$$[A *_n B]^{\alpha} = \prod_{i=1}^n [a_i * b_i]^{\alpha},$$

where $*_n$ is operator in E_N^n and * is operator in E_N .

Let $\prod_{i=1}^n [a_i]^{\alpha}$, $0 < \alpha \le 1$, be a given family of nonempty areas.

If

(2.3)
$$\prod_{i=1}^{n} [a_i]^{\beta} \subset \prod_{i=1}^{n} [a_i]^{\alpha} \text{ for } 0 < \alpha < \beta < 1$$

and

(2.4)
$$\prod_{i=1}^{n} \lim_{k \to \infty} [a_i]^{\alpha_k} = \prod_{i=1}^{n} [a_i]^{\alpha}$$

whenever (α_k) is a nondecreasing sequence converging to $\alpha \in (0,1]$, then the family $\prod_{i=1}^n [a_i]^\alpha, \ 0<\alpha \leq 1$, represents the α -level sets of a fuzzy number $A\in E_N^n$.

Conversely, if $\prod_{i=1}^{n} [a_i]^{\alpha}$, $0 < \alpha \le 1$, are the α -level sets of a fuzzy number in \mathbb{R}^n , then the conditions (2.3) and (2.4) hold true.

We denote the metric d_{∞} on E_N^n and the suprimum metric H_1 on $C([0,T]:E_N^n)$.

Definition 2.1. Let $A, B \in E_N^n$.

$$\begin{split} d_{\infty}(A,B) &= \sup\{d_{H}([A]^{\alpha},[B]^{\alpha}) : \alpha \in (0,1]\}\\ &= \sup\{d_{H}(\Pi_{i=1}^{n}[A_{i}]^{\alpha},\Pi_{i=1}^{n}[B_{i}]^{\alpha}) : \alpha \in (0,1]\}\\ &= \sup\{\sqrt{\sum_{i=1}^{n}(d_{H}([A_{i}]^{\alpha},[B_{i}]^{\alpha}))^{2}} : \alpha \in (0,1]\}, \end{split}$$

where d_H is the Hausdorff distance.

Definition 2.2. The supremum metric H_1 on $C([0,T]:E_N^n)$ is defined by

$$H_1(x,y) = \sup\{d_{\infty}(x(t),y(t)); t \in [0,T]\}$$

for all $x, y \in C([0, T]; E_N^n)$

Definition 2.3. Nonlinear regular fuzzy function $f:[0,T]\times E_N^n\times E_N^n\to E_N^n$ is satisfied, $x,y\in E_N^n$,

$$f(t, [x]^{\alpha}) = f(t, \Pi_{m=1}^{n} [x_{m}]^{\alpha})$$

$$= \Pi_{m=1}^{n} f_{m}(t, [x_{m}]^{\alpha})$$

$$= \Pi_{m=1}^{n} f_{m}^{\alpha}(t, x)$$

$$= f^{\alpha}(t, x) = [f(t, x)]^{\alpha}.$$

3. Nonlocal controllability

In this section, we show the exact controllability for the following nonlinear fuzzy control system:

$$(F.C.S.) \qquad \begin{cases} \dot{x}(t) = a(t)x(t) + f(t, x(t)) + u(t) ,\\ x(0) + g(t_1, t_2, \cdots, t_p, x(\cdot)) = x_0,\\ & \cdot \in \{t_1, t_2, \cdots, t_p\} \end{cases}$$

with fuzzy coefficient $a:[0,T]\to E_N^n$, initial value $x_0\in E_N^n$ and control $u:[0,T]\to E_N^n$ and given nonlinear regular fuzzy function $g:[0,T]^p\times E_N^n\to E_N^n$, $f:[0,T]\times E_N^n\to E_N^n$ are satisfy global Lipschitz condition

The (F.C.S.) is related to the following fuzzy integral system:

$$(F.I.E.) \begin{cases} x(t) = S(t)(x_0 - g(t_1, t_2, \cdots, t_p, x(\cdot))) \\ + \int_0^t S(t - s)f(s, x(s))ds \\ + \int_0^t S(t - s)u(s)ds, \\ x(0) = x_0 + g(t_1, t_2, \cdots, t_p, x(\cdot)) \in E_N, \\ \cdot \in \{t_1, t_2, \cdots, t_p\}. \end{cases}$$

where S(t) is fuzzy number of dimension n and

$$[S(t)]^{lpha} = \prod_{i=1}^{n} [S_i(t)]^{lpha} = \prod_{i=1}^{n} [S_{il}^{lpha}(t), \ S_{ir}^{lpha}(t)]$$

where $S_{ii}^{\alpha}(t)$ is $\exp\left\{\int_{0}^{t}a_{l}^{\alpha}(s)ds\right\}$ and $S_{ir}^{\alpha}(t)$ is $\exp\left\{\int_{0}^{t}a_{r}^{\alpha}(s)ds\right\}$. And $S_{ij}^{\alpha}(t)$ (j=l,r) is continuous. That is, there exists a constant c>0 such that $|S_{ij}^{\alpha}(t)| \leq c$ for all $t \in [0,T]$.

Definition 3.1. The (F.I.S.) is nonlocal exact controllable if, there exists u(t) such that the fuzzy solution x(t) of (F.I.S.) satisfies

$$x(T) = x^{1} - g(t_{1}, t_{2}, \dots, t_{p}, x(\cdot))$$

$$(i.e., [x(T)]^{\alpha} = \prod_{i=1}^{n} [x_{i}(T)]^{\alpha}$$

$$= \prod_{i=1}^{n} [(x^{1})_{i} - g_{i}(t_{1}, t_{2}, \dots, t_{p}, x(\cdot))]^{\alpha}$$

$$= [x^{1} - g(t_{1}, t_{2}, \dots, t_{p}, x(\cdot))]^{\alpha})$$

where x^1 is target set.

We assume that the following linear fuzzy control system with respect to nonlinear fuzzy control system (F.C.S.):

$$(F.C.S.1) \quad \begin{cases} \dot{x}(t) = a(t)x(t) + u(t), \\ x(0) + g(t_1, t_2, \dots, t_p, x(\cdot)) = x_0 \in E_N^n \end{cases}$$

is exact controllable. Then

$$x(T)$$
= $S(T)(x_0 - g(t_1, t_2, \dots, t_p, x(\cdot)))$
+ $\int_0^T S(T - s)u(s)ds$
= x^1

and

$$\begin{split} [x(T)]^{\alpha} &= \left[S(T)(x_0 - g(t_1, t_2, \cdots, t_p, x(\cdot))) \right. \\ &+ \int_0^T S(T - s)u(s)ds \right]^{\alpha} \\ &= \prod_{i=1}^n \left[S_i(T)(x_0 - g(t_1, t_2, \cdots, t_p, x(\cdot)))_i \right. \\ &+ \int_0^T S_i(T - s)u_i(s)ds \right]^{\alpha} \\ &= \prod_{i=1}^n \left[S_{il}^{\alpha}(T)(x_0 - g(t_1, t_2, \cdots, t_p, x(\cdot)))_{il}^{\alpha} \right. \\ &+ \int_0^T S_{il}^{\alpha}(T - s)u_{il}^{\alpha}(s)ds, \\ S_{ir}^{\alpha}(T)(x_0 - g(t_1, t_2, \cdots, t_p, x(\cdot)))_{ir}^{\alpha} \\ &+ \int_0^T S_{ir}^{\alpha}(T - s)u_{ir}^{\alpha}(s)ds \right] \\ &= \prod_{i=1}^n \left[(x^1)_{il}^{\alpha}, \ (x^1)_{ir}^{\alpha} \right] \\ &= \left. \left[x^1 \right]^{\alpha}. \end{split}$$

Defined the fuzzy mapping $\widetilde{g}: \widetilde{P}(\mathbb{R}^n) \to \mathbb{E}^n_N$ by

$$\widetilde{g}^\alpha(v) = \begin{cases} \int_0^T S^\alpha(T-s)v(s)ds \;, & v \subset \overline{\Gamma_u} \;, \\ 0 \;, & \text{otherwise} \end{cases}$$

Then there exists $\widetilde{g}_i : \widetilde{P}(R) \to E_N \ (i = 1, 2, \dots, n)$ such that

$$\widetilde{g}_i^{lpha}(v_i) = egin{cases} \int_0^T S_i^{lpha}(T-s)v_i(s)ds \;, & v_i(s) \subset \overline{\Gamma_{u_i}}, \ 0 \;, & ext{otherwise} \end{cases}$$

where u_i is projection of u to axis $X_i, (i = 1, \dots, n)$ respectively and there exists $\widetilde{g}_{ij}^{\alpha}$ (j = l, r)

$$\widetilde{g}_{il}^{lpha}(v_{il}) = \int_{0}^{T} S_{il}^{lpha}(T-s)v_{il}(s)ds , \ v_{il}(s) \in [u_{il}^{lpha}(s), \ u_{i}^{1}(s)] , \ \widetilde{g}_{ir}^{lpha}(v_{ir}) = \int_{0}^{T} S_{ir}^{lpha}(T-s)v_{ir}(s)ds , \ v_{ir}(s) \in [u_{il}^{1}(s), \ u_{ir}^{lpha}(s)] .$$

We assume that $\widetilde{g}_{il}^{\alpha}, \widetilde{g}_{ir}^{\alpha}$ are bijective mappings. Hence α -level of u(s) are

$$\begin{aligned} &[u(s)]^{\alpha} \\ &= \prod_{i=1}^{n} [u_{i}(s)]^{\alpha} = \prod_{i=1}^{n} [u_{il}^{\alpha}(s), \ u_{ir}^{\alpha}(s)] \\ &= \prod_{i=1}^{n} \left[(\widetilde{g}_{il}^{\alpha})^{-1} \left((x^{1} - g(t_{1}, t_{2}, \cdots, t_{p}, x(\cdot)))_{il}^{\alpha} \right. \\ &\left. - S_{il}^{\alpha}(T)(x_{0})_{il}^{\alpha} \right), \\ &\left. (\widetilde{g}_{ir}^{\alpha})^{-1} \left((x^{1} - g(t_{1}, t_{2}, \cdots, t_{p}, x(\cdot)))_{ir}^{\alpha} \right. \\ &\left. - S_{ir}^{\alpha}(T)(x_{0})_{ir}^{\alpha} \right) \right] \end{aligned}$$

Thus we can be introduced u(s) of nonlinear system

$$\begin{split} &[u(s)]^{\alpha} \\ &= \prod_{i=1}^{n} [u_{i}(s)]^{\alpha} = \prod_{i=1}^{n} [u_{il}^{\alpha}(s), \ u_{ir}^{\alpha}(s)] \\ &= \prod_{i=1}^{n} \ (\widetilde{g}_{il}^{\alpha})^{-1} \ (x^{1} - g(t_{1}, t_{2}, \cdots, t_{p}, x(\cdot)))_{il}^{\alpha} \\ &\quad - S_{il}^{\alpha}(T)(x_{0})_{il}^{\alpha} - \int_{0}^{T} S_{il}^{\alpha}(T - s) f_{il}^{\alpha}(s, x_{il}^{\alpha}(s)) ds \ , \\ &\quad (\widetilde{g}_{ir}^{\alpha})^{-1} \ (x^{1} - g(t_{1}, t_{2}, \cdots, t_{p}, x(\cdot)))_{ir}^{\alpha} \\ &\quad - S_{ir}^{\alpha}(T)(x_{0})_{ir}^{\alpha} - \int_{0}^{T} S_{ir}^{\alpha}(T - s) f_{ir}^{\alpha}(s, x_{ir}^{\alpha}(s)) ds \ . \end{split}$$

Then substituting this expression into the (F.I.S.) yields α -level of x(T). For each $i=1,\cdots,n,$

$$\begin{split} &[x_{i}(T)]^{\alpha} \\ &= S_{il}^{\alpha}(T)(x_{0} - g(t_{1}, t_{2}, \cdots, t_{p}, x(\cdot)))_{il}^{\alpha} \\ &+ \int_{0}^{T} S_{il}^{\alpha}(T - s)f_{il}^{\alpha}(s, x_{il}^{\alpha}(s))ds \\ &+ \int_{0}^{T} S_{il}^{\alpha}(T - s)(\widetilde{g}_{il}^{\alpha})^{-1} \ (x^{1} - g(t_{1}, t_{2}, \cdots, t_{p}, x(\cdot)))_{il}^{\alpha} \\ &- S_{il}^{\alpha}(T)(x_{0} - g(t_{1}, t_{2}, \cdots, t_{p}, x(\cdot)))_{il}^{\alpha} \\ &- \int_{0}^{T} S_{il}^{\alpha}(T - s)f_{il}^{\alpha}(s, x_{il}^{\alpha}(s))ds \ ds, \\ S_{ir}^{\alpha}(T)(x_{0} - g(t_{1}, t_{2}, \cdots, t_{p}, x(\cdot)))_{ir}^{\alpha} \\ &+ \int_{0}^{T} S_{ir}^{\alpha}(T - s)f_{ir}^{\alpha}(s, x_{ir}^{\alpha}(s))ds \\ &+ \int_{0}^{T} S_{ir}^{\alpha}(T - s)(\widetilde{g}_{ir}^{\alpha})^{-1} \ (x^{1} - g(t_{1}, t_{2}, \cdots, t_{p}, x(\cdot)))_{ir}^{\alpha} \\ &- S_{ir}^{\alpha}(T)(x_{0} - g(t_{1}, t_{2}, \cdots, t_{p}, x(\cdot)))_{ir}^{\alpha} \\ &- \int_{0}^{T} S_{ir}^{\alpha}(T - s)f_{ir}^{\alpha}(s, x_{ir}^{\alpha}(s))ds \ ds \\ &= S_{il}^{\alpha}(T)(x_{0} - g(t_{1}, t_{2}, \cdots, t_{p}, x(\cdot)))_{il}^{\alpha} \\ &+ \int_{0}^{T} S_{il}^{\alpha}(T - s)f_{il}^{\alpha}(s, x_{il}^{\alpha}(s))ds \end{split}$$

$$\begin{split} &+\widetilde{g}_{il}^{\alpha} \ \, (\widetilde{g}_{il}^{\alpha})^{-1} \ \, (x^{1}-g(t_{1},t_{2},\cdots,t_{p},x(\cdot)))_{il}^{\alpha} \\ &-S_{il}^{\alpha}(T)(x_{0}-g(t_{1},t_{2},\cdots,t_{p},x(\cdot)))_{il}^{\alpha} \\ &-\int_{0}^{T} S_{il}^{\alpha}(T-s)f_{il}^{\alpha}(s,x_{il}^{\alpha}(s))ds \quad , \\ &S_{ir}^{\alpha}(T)(x_{0}-g(t_{1},t_{2},\cdots,t_{p},x(\cdot)))_{ir}^{\alpha} \\ &+\int_{0}^{T} S_{ir}^{\alpha}(T-s)f_{ir}^{\alpha}(s,x_{ir}^{\alpha}(s))ds \\ &+\widetilde{g}_{ir}^{\alpha} \ \, (\widetilde{g}_{ir}^{\alpha})^{-1} \ \, (x^{1}-g(t_{1},t_{2},\cdots,t_{p},x(\cdot)))_{ir}^{\alpha} \\ &-S_{ir}^{\alpha}(T)(x_{0}-g(t_{1},t_{2},\cdots,t_{p},x(\cdot)))_{ir}^{\alpha} \\ &-\int_{0}^{T} S_{ir}^{\alpha}(T-s)f_{ir}^{\alpha}(s,x_{ir}^{\alpha}(s))ds \\ &=[(x^{1}-g(t_{1},t_{2},\cdots,t_{p},x(\cdot)))_{il}^{\alpha}, \\ &\qquad (x^{1}-g(t_{1},t_{2},\cdots,t_{p},x(\cdot)))_{ir}^{\alpha} \\ &=[(x^{1}-g(t_{1},t_{2},\cdots,t_{p},x(\cdot)))_{i}]^{\alpha} \end{split}$$

Therefore

$$[x(T)]^{\alpha} = \prod_{i=1}^{n} [x_i(T)]^{\alpha}$$

$$= \prod_{i=1}^{n} [(x^1 - g(t_1, t_2, \dots, t_p, x(\cdot)))_i]^{\alpha}$$

$$= [x^1 - g(t_1, t_2, \dots, t_p, x(\cdot))]^{\alpha}.$$

We now set

$$\begin{split} \Phi x(t) \\ = & S(t)(x_0 - g(t_1, t_2, \cdots, t_p, x(\cdot))) \\ &+ \int_0^t S(t - s) f(s, x(s)) ds \\ &+ \int_0^t S(t - s) \widetilde{g}^{-1} \ x^1 - g(t_1, t_2, \cdots, t_p, x(\cdot)) \\ &- S(T)(x_0 - g(t_1, t_2, \cdots, t_p, x(\cdot))) \\ &- \int_0^T S(T - s) f(s, x(s)) ds \ ds \end{split}$$

where the fuzzy mappings \widetilde{g}^{-1} satisfied above statements. Notice that $\Phi x(T) =_{\alpha} x^1 - g(t_1, t_2, \cdots, t_p, x(\cdot)),$

Notice that $\Phi x(T) =_{\alpha} x^1 - g(t_1, t_2, \cdots, t_p, x(\cdot)),$ which means that the control u(t) steers the (F.C.S.) from the origine to $x^1 - g(t_1, t_2, \cdots, t_p, x(\cdot))$ in time T provided we can obtain a fixed point of the nonlinear operator Φ

Assume that the following hypotheses:

(H1) (F.C.S. 1) is exact controllable.

(H2) Inhomogeneous term $f:[0,T]\times E_N^n\to E_N^n$ satisfies a global Lipschitz condition, there exists a finite constant $k_i>0$ such that

$$d_H [f_i(s, x_i(s))]^{\alpha}, [f_i(s, y_i(s))]^{\alpha} \le k_i d_H [x_i(s)]^{\alpha}, [y_i(s)]^{\alpha}$$

for all $x_i(s), y_i(s) \in E_N$ and $f_i : [0, T] \times E_N \to E_N$ $(i = 1, \dots, n)$ is the *i*-th projection of f.

(H3) $g: [0,T]^p \times E_N^n \to E_N^n$ satisfies a global Lipschitz condition, there exists a finite constant $L_i > 0$ such that

$$d_{H} [g_{i}(t_{1}, t_{2}, \cdots, t_{p}, x_{i}(\cdot))]^{\alpha}, [g_{i}(t_{1}, t_{2}, \cdots, t_{p}, y_{i}(\cdot))]^{\alpha} \le L_{i} d_{H} [x_{i}(s)]^{\alpha}, [y_{i}(s)]^{\alpha}$$

for all $x_i(s), y_i(s) \in E_N$ and $g_i : [0,T]^p \times E_N \to E_N$ $(i = 1, \dots, n)$ is the *i*-th projection of g.

(H4)
$$((1+2c)L_i + 2ck_iT)$$
 < 1.

Theorem 3.1 Suppose that hypotheses (H1), (H2), (H3) and (H4) are satisfied. Then the state of the (F.I.S.) can be steered from the initial value $x_0 - g(t_1, t_2, \cdots, t_p, x(\cdot))$ to any final state $x^1 - g(t_1, t_2, \cdots, t_p, x(\cdot))$ in time T.

Proof The continuous function from $C([0,T]:E_N^n)$ to itself defined by

$$egin{aligned} \Phi x(t) =_lpha S(t)(x_0 - g(t_1, t_2, \cdots, t_p, x(\cdot))) \ &+ \int_0^t S(t-s) f(s, x(s)) ds \ &+ \int_0^t S(t-s) \widetilde{g}^{-1} \ x^1 - g(t_1, t_2, \cdots, t_p, x(\cdot)) \ &- S(T)(x_0 - g(t_1, t_2, \cdots, t_p, x(\cdot))) \ &- \int_0^T S(T-s) f(s, x(s)) ds \ ds. \end{aligned}$$

There exist Φ_i $(i=1,\cdots,n)$ is continuous function from $C([0,T]:E_N)$ to itself. Let $x,y\in C([0,T]:E_N^n)$ there exist x_i,y_i $(i=1,\cdots,n)\in C([0,T]:E_N)$.

$$\begin{split} d_{H} & \left[\Phi_{i} x_{i}(t) \right]^{\alpha}, \left[\Phi_{i} y_{i}(t) \right]^{\alpha} \\ = d_{H} & S_{i}(t)(x_{0} - g(t_{1}, t_{2}, \cdots, t_{p}, x(\cdot)))_{i} \\ & + \int_{0}^{t} S_{i}(t - s) f_{i}(s, x_{i}(s)) ds \\ & + \int_{0}^{t} S_{i}(t - s) \widetilde{g}_{i}^{-1} \left(x^{1} - g(t_{1}, t_{2}, \cdots, t_{p}, x(\cdot)) \right)_{i} \\ & - S_{i}(T)(x_{0} - g(t_{1}, t_{2}, \cdots, t_{p}, x(\cdot)))_{i} \\ & - \int_{0}^{T} S_{i}(T - s) f_{i}(s, x_{i}(s)) ds \ ds^{\alpha}, \\ & S_{i}(t)(x_{0} - g(t_{1}, t_{2}, \cdots, t_{p}, y(\cdot)))_{i} \\ & + \int_{0}^{t} S_{i}(t - s) \widetilde{g}_{i}^{-1} \left(x^{1} - g(t_{1}, t_{2}, \cdots, t_{p}, y(\cdot)) \right)_{i} \\ & - S_{i}(T)(x_{0} - g(t_{1}, t_{2}, \cdots, t_{p}, y(\cdot)))_{i} \\ & - \int_{0}^{T} S_{i}(T - s) f_{i}(s, y_{i}(s)) ds \ ds^{\alpha} \\ \leq d_{H} & S_{i}(t)(x_{0} - g(t_{1}, t_{2}, \cdots, t_{p}, x(\cdot)))_{i}^{\alpha}, \\ & S_{i}(t)(x_{0} - g(t_{1}, t_{2}, \cdots, t_{p}, y(\cdot)))_{i}^{\alpha} \end{split}$$

$$+ d_{H} \int_{0}^{t} S_{i}(t-s)f_{i}(s,x_{i}(s))ds ^{\alpha},$$

$$\int_{0}^{t} S_{i}(t-s)f_{i}(s,y_{i}(s))ds ^{\alpha}$$

$$+ d_{H} \int_{0}^{T} S_{i}(T-s)\widetilde{g_{i}}^{-1}(g_{i}(t_{1},t_{2},\cdots,t_{p},x(\cdot))$$

$$+ S_{i}(T)g_{i}(t_{1},t_{2},\cdots,t_{p},x(\cdot))$$

$$+ \int_{0}^{T} S_{i}(T-s)\widetilde{f_{i}}(s,x_{i}(s))ds)ds ^{\alpha},$$

$$\int_{0}^{T} S_{i}(T-s)\widetilde{g_{i}}^{-1}(g_{i}(t_{1},t_{2},\cdots,t_{p},y(\cdot))$$

$$+ S_{i}(T)g_{i}(t_{1},t_{2},\cdots,t_{p},y(\cdot))$$

$$+ \int_{0}^{T} S_{i}(T-s)f_{i}(s,y_{i}(s))ds)ds ^{\alpha}$$

$$\leq d_{H} S_{i}(t)(x_{0}-g(t_{1},t_{2},\cdots,t_{p},x(\cdot)))_{i} ^{\alpha},$$

$$S_{i}(t)(x_{0}-g(t_{1},t_{2},\cdots,t_{p},x(\cdot)))_{i} ^{\alpha}$$

$$+ d_{H} \int_{0}^{t} S_{i}(t-s)f_{i}(s,x_{i}(s)) ^{\alpha}ds$$

$$+ d_{H} \widetilde{g_{i}}(\widetilde{g_{i}}^{-1}(g_{i}(t_{1},t_{2},\cdots,t_{p},x(\cdot))$$

$$+ S_{i}(T)g_{i}(t_{1},t_{2},\cdots,t_{p},x(\cdot))$$

$$+ \int_{0}^{T} S_{i}(T-s)f_{i}(s,x_{i}(s))ds)) ^{\alpha},$$

$$\widetilde{g_{i}}(\widetilde{g_{i}}^{-1}(g_{i}(t_{1},t_{2},\cdots,t_{p},y(\cdot))$$

$$+ \int_{0}^{T} S_{i}(T-s)f_{i}(s,y_{i}(s))ds)) ^{\alpha}$$

$$\leq d_{H} S_{i}(t)g_{i}(t_{1},t_{2},\cdots,t_{p},x(\cdot)) ^{\alpha},$$

$$S_{i}(t)g_{i}(t_{1},t_{2},\cdots,t_{p},y(\cdot)) ^{\alpha}$$

$$+ \int_{0}^{t} d_{H} S_{i}(t-s)f_{i}(s,x_{i}(s)) ^{\alpha},$$

$$S_{i}(t-s)f_{i}(s,y_{i}(s)) ^{\alpha} ds$$

$$+ d_{H} g_{i}(t_{1},t_{2},\cdots,t_{p},x(\cdot)) ^{\alpha},$$

$$S_{i}(t-s)f_{i}(s,y_{i}(s)) ^{\alpha} ds$$

$$+ d_{H} S_{i}(T)g_{i}(t_{1},t_{2},\cdots,t_{p},x(\cdot)) ^{\alpha},$$

$$S_{i}(t-s)f_{i}(s,y_{i}(s)) ^{\alpha} ds$$

$$+ d_{H} S_{i}(T)g_{i}(t_{1},t_{2},\cdots,t_{p},x(\cdot)) ^{\alpha},$$

$$S_{i}(t-s)f_{i}(s,y_{i}(s)) ^{\alpha} ds$$

$$+ d_{H} S_{i}(T)g_{i}(t_{1},t_{2},\cdots,t_{p},x(\cdot)) ^{\alpha},$$

$$S_{i}(T)g_{i}(t_{1},t_{2},\cdots,t_{p},y(\cdot)) ^{\alpha}$$

$$+ d_{H} S_{i}(T)g_{i}(t_{1},t_{2},\cdots,t_{p},x(\cdot)) ^{\alpha},$$

$$S_{i}(T)g_{i}(t_{1},t_{2},\cdots,t_{p},y(\cdot)) ^{\alpha}$$

$$+ d_{H} S_{i}(T)g_{i}(t_{1},t_{2},\cdots,t_{p},x(\cdot)) ^{\alpha},$$

$$S_{i}(T)g_{i}(t_{1},t_{2},\cdots,t_{p},y(\cdot)) ^{\alpha}$$

$$+ d_{H} S_{i}(T)g_{i}(t_{1},t_{2},\cdots,t_{p},y(\cdot)) ^{\alpha}$$

$$+ d_{H} S_{i}(T)g_{i}(t_{1},t_$$

$$+ L_{i}d_{H} [x_{i}(t)]^{\alpha}, [y_{i}(t)]^{\alpha} + cL_{i}d_{H} [x_{i}(t)]^{\alpha}, [y_{i}(t)]^{\alpha}$$

$$+ ck_{i} \int_{0}^{T} d_{H} [x_{i}(s)]^{\alpha}, [y_{i}(s)]^{\alpha} ds$$

$$\leq (1 + 2c)L_{i} + ck_{i}(t + T) d_{H} [x_{i}(t)]^{\alpha}, [y_{i}(t)]^{\alpha}$$

Thus

$$\begin{split} & d_{\infty} \; \Phi x, \Phi y \\ &= \sup_{\alpha \in (0,1]} d_H \; \left[\Phi x \right]^{\alpha}, \left[\Phi y \right]^{\alpha} \\ &= \sup_{\alpha \in (0,1]} \left\{ \sum_{i=1}^n \; d_H (\left[\Phi_i x_i \right]^{\alpha}, \left[\Phi_i y_i \right]^{\alpha})^{-2} \right\}^{1/2} \\ &\leq \; (1 + 2c) L_i + c k_i (t + T) \\ & \qquad \times \sup_{\alpha \in (0,1]} \left\{ \sum_{i=1}^n \; d_H (\left[x_i(t) \right]^{\alpha}, \left[y_i(t) \right]^{\alpha})^{-2} \right\}^{1/2} \\ &= \; (1 + 2c) L_i + c k_i (t + T) \; d_{\infty}(x, y) \end{split}$$

Hence

$$\begin{split} H_1 & \Phi x, \Phi y &= \sup_{t \in [0,T]} d_{\infty} & \Phi x, \Phi y \\ &\leq \sup_{t \in [0,T]} & (1+2c)L_i + ck_i(t+T) & d_{\infty}(x,y) \\ &\leq & (1+2c)L_i + 2ck_iT) & \sup_{t \in [0,T]} d_{\infty}(x,y) \\ &= & (1+2c)L_i + 2ck_iT) & H_1(x,y). \end{split}$$

Since $((1+2c)L_i+2ck_iT)$ < 1, Φ is a contraction mapping. By the Banach fixed point theorem, (F.C.S.) has a unique fixed point $x \in C([0,T]:E_N^n)$.

References

- [1] Diamond, P., & Kloeden, P. E. Metric Spaces of Fuzzy sets, World Scientific, (1994).
- [2] Kaleva, O., Fuzzy Differential Equations, Fuzzy Sets and System, 24 (1987), 301–317.
- [3] Kaufman, A., & Gupta, M. M., Introduction to Fuzzy Arithmetic, Van Nostrand Reinhold, (1991)
- [4] Kloeden, P. E., Fuzzy dynamical systems, Fuzzy Sets and Systems, 7 (1982), 275–296.
- [5] Kwun, Y. C., & Park, D. G., Optimal control problem for fuzzy differential equations, Preceedings of the Korea-Vietnam Joint Seminar, (1998), 103-114.
- [6] Kwun, Y. C., Park, J. S., Kang, J. R., & Jeong, D. H., The exact controllability for the nonlinear fuzzy control system in E_N^n , J. of Fuzzy Logic and Intelligent Systems, **13(4)** (2003), 499–503.

- [7] Kwun, Y. C., Han, C. W., Kim, S. Y. and Park, J. S., Existence and Uniqueness of fuzzy solutions for the nonlinear fuzzy integro-differential equation on E_N^n , International J. of Fuzzy Logic and Intelligent Systems, 4(1) (2004), 40–44.
- [8] Mizmoto, M., & Tanaka, K., Some properties of fuzzy numbers, Advances in Fuzzy Sets Theory and applications, North-Holland Publishing Company, (1979), 153–164.
- [9] Park, J. S., Kim, Y. S., Kang, J. R., & Kwun, Y. C., The existence and uniqueness of solution for the nonlinear fuzzy differential equations with nonlocal initial condition, J. of Fuzzy Logic and Intelligent Systems, 11(8)(2001), 715-719.
- [10] Seikkala, S., On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319–330.
- [11] Subrahmanyam, P. V., & Sudarsanam, S. K., A note fuzzy vol- terra integral equations, Fuzzy Sets and Systems, 81 (1996), 237–240.

Bu Young Lee

Professor of Dong-A University

Research Area: Fuzzy mathematics, Fuzzy topology, Gen-

eral topology

E-mail: bylee@dau.ac.kr

Dong Gun Park

Professor of Dong-A University

Research Area: Fuzzy mathematics, Fuzzy differential equation, Partial differential equation

E-mail: dgpark@dau.ac.kr

Gyu Tak Choi

Associate Professor of Kyungnam College of Information & Technonlogy

Research Area: Fuzzy mathematics, Fuzzy Programming, Linear programming

E-mail: gtchoi@kit.ac.kr

Young Chel Kwun

Professor of Dong-A University

Research Area: Fuzzy mathematics, Fuzzy differential equation, System theory and control

E-mail: yckwun@dau.ac.kr