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Abstract

In this paper we study the exact controllability for the nonlinear fuzzy control system with nonlocal initial condition in
E%, by using the concept of fuzzy number of dimension n whose values are normal, convex, upper semicontinuous and
compactly supported surface in R™. E%; be the set of all fuzzy numbers in R™ with edges having bases parallel to axis

XI;XQ,“' 7Xn-
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1. Introduction

Many authors have studied several concepts of fuzzy
systems.

Kaleval[2] studied the existence and uniqueness of solu-
tion for the fuzzy differential equation on E™ where E" is
normal, convex, upper semicontinuous and compactly sup-
ported surface in R™.

Seikkala[10] proved the existence and uniqueness of
fuzzy solution for the initial value problem on E*.

Subrahmanyam and Sudarsanam [11] studied fuzzy
volterra - integral equation. :

Park etal.[9] are proved the existence and uniqueness of
fuzzy solution for the nonlinear fuzzy differential equation
on E7; with nonlocal initial condition.

Kwun etal.[6] are studied controllability for the nonlin-
ear fuzzy control system on E7};, where EF; be the set of all
fuzzy numbers in with edges having bases parallel to axis
X1,X5, -+, X,,. For example E% be the set of all fuzzy
pyramidal numbers in R? with edges having rectangular
bases parallel to the axis X; and Xo.
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The purpose of this paper is to investigate the exact con-
trollability of the nonlinear fuzzy control system in E7,.

Let E}; be the set of all fuzzy numbers in R™ with
edges having bases parallel to axis X1, -+ , X,,.

For example, E2, be the set of all fuzzy pyramidal num-
bers in R? with edges having rectangular bases parallel to
the axis X and X ([6]).

We consider the exact controllability for the following
nonlinear fuzzy control system with nonlocal initial condi-
tion:

#(t) = a(t)z(t) + f(t, x(t)) + u(t) ,

(FCS) lL‘(O)+g(t1,t2,-~- atpaw('))zwm
- € {t17t27 e 7tP}
where a : [0,7] — Ep is fuzzy coefficient, initial value

2o € E%. f:[0,T|x E% — E% and g : [0, TJP x E% —
E7; are nonlinear function and u(t) € E7; is control func-
tion.
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2. Properties of fuzzy numbers

We consider a fuzzy graph G C R that is a func-
tional fuzzy relation in R™ such that its membership func-
tion pg(xy, - ,2,) € [0,1], (21, -+ ,x2) € R™ has the
following properties:

1.Forallz; € R, (1 =1,--- ,k—1,k+1,--- n),

,U‘G(:L‘l,"' sy Thyt "t ,J?n) € {071]

is a convex membership function.
2.Foralla € [0,1],

{(xl,... ,

is a convex set.
3. There exists (z1,- - -

zn) € R" : pg(z1, - ,zn) = a}

,Zn) € R™,

MG(xla"' )xn) = 1.

If the above conditions are satisfied, the fuzzy subset G is
called a fuzzy number of dimension n.

The first projection of G is

Viga, 2} b6 (21,0 Tn) = pai (21),

the second projection of G is

V{EI,EB,"' ,Illn}“’G(mla ce 7mn) = HA; (1132)

and the i-th projection of G is

v{wl,"' i1, i1,y ,a:n}p'G(xla T axn) = lA; (x’i)a

wherei =3, -+ ,n.
We denote by fuzzy number in E7;

A= (alaa%"' aan)7

where a; is projection of A to axis X;, (¢ = 1,---,n).
And a;, (i =1,---,n) is fuzzy number in R.

The a-level set of fuzzy number in E'; is defined by

n

2n) € [Tlal),

i=1

[A]az{(xl,"‘ ,$n) GR";(;{,‘l,...

where notation H is the Cartesian product of sets.
Let A and B in E7, for all @ € (0, 1],

(2.1) A=B < [A*=[B]"

(2.2) (A *,, B]*

H [a; * b;]%,
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where *,, is operator in EF; and * is operator in Ep.

Let H[ai]a, 0 < a < 1, be a given family of
i=1

nonempty areas.
It
(2.3) ﬁ[ai]ﬁ C ﬁ[ai]“ for0<a<f<1
i=1 i=1
and
ey L mier = [

whenever (ay) is a nondecreasing sequence converging to
a € (0, 1], then the family ﬁ[ai]"‘, 0 < a < 1, represents
the a-level sets of a fuzzy riliinber A€ E}.

Conversely, if ﬁ[ai]", 0 < a < 1, are the a-level

=1
sets of a fuzzy number in R™, then the conditions (2.3) and
(2.4) hold true.

We denote the metric d, on EY% and the suprimum
metric H; on C([0,T] : ER).

Definition 2.1. Let A, B € E},.

doo (A, B) = sup{du([A4]*,[B]") : a € (0,1]}
= sup{dn (I}—; [A:]*, ;=1 [Bi]*) : @ € (0,1]}

= Sup{\J D (da([Ad>, [Bi]*))? : € (0,1]},

=1
where dg is the Hausdorff distance.

Definition 2.2. The supremum metric H; on C{[0,T] :
E%) is defined by

Hy(z,y) = sup{deo(z(t),y(t)); t € [0, 71}

forall z,y € C([0,T); E})

Definition 2.3. Nonlinear regular fuzzy function f :
[0,T] x E} x E}y — EY; is satisfied, z,y € E},

@ [2]%) = £t Mnai[zm]®)
=e1 fm (t [2m]%)
=11 fm(t, %)
= f*(t, =) = [f@t,2)]"
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3. Nonlocal controllability

In this section, we show the exact controllability for the
following nonlinear fuzzy control system:

&(t) = a(t)z(t) + f(t, (1)) +u(t),
(D(O) + g(tht?! e 1tp’x(')) = T0,
. € {t17t2’... ,tp}

(F.C.S.)

with fuzzy coefficient @ : [0,7] — EY¥, initial value
zo € E} and control u : [0,T] — E}, and given non-
linear regular fuzzy function g : [0,T]? x E% — E%,
[ :[0,T) x E} — E% are satisfy global Lipschitz condi-
tion.

The (F.C.S.) is related to the following fuzzy integral
system:

( ﬂ}(t) :—S(t)(mo - g(tltha te vtp’m(')))

+ /0 S(t — 8)f(s, o(s))ds

(F.I.E.) 4 + /Ot S(t — s)u(s)ds,

113(0) =Zo +g(t17t21 T 7tp7$(')) € En,
- € {tht?a"' 7t10}'

where S(t) is fuzzy number of dimension n and

n n

[s@)* = [11s:> = T]isa®), s
i=1 =1
where S5(t) is exp{f(;t a¥(s)ds} and Sg(t) is
exp{f(;t aX(s)ds}. And Sg(t) (j = I,r) is continu-
ous. That is, there exists a constant ¢ > 0 such that
|S%(#)| < ¢ forall ¢t € [0,T].

Definition 3.1. The (F.L.S.) is nonlocal exact control-
lable if, there exists u(t) such that the fuzzy solution x(t)
of (F.L.S.) satisfies

(IJ(T) = l‘l - g(tltha e atpax('))

(ie. (D) = [Tl

:‘1_1[(‘7"1)z - gi(t17 to, -, ip, m())]a

:[wl - g(tlat29 T 7tpaw('))]a )

where z! is target set.

We assume that the following linear fuzzy control sys-
tem with respect to nonlinear fuzzy control system (F.C.S.):

z(t) = a(t)z(t) + u(t),

(F.C.5.1) {m(o) F gt ta, b, 2() = 20 € EF;

is exact controllable. Then
z(7T)
ZS(T)(‘TO - g(tl) t27 Tty ch CE()))

+ /OT S(T — s)u(s)ds

and
[z(T)]*
= [S(T)(mo — g(t1,t2, s tp, z(-)))

+ /;1 S(T - s)u(s)ds]a

= H[Si(T)(x(] —g(ti,ta, - tp,2(4)))s
i=1
T
+/0 Si(T — s)u;(s)ds]
= H[Sﬁ(T)(Io —g(ti,ta, 1, 2()))5
T
+/0 SH(T — s)ui(s)ds,
S (T) (o — gltr, b2, 1, 2()))5
T .
n /0 S5(T ~ s)ugy(s)ds]
=[1i=hg, @zl
=1
— {mlla .

Defined the fuzzy mapping g : ﬁ(R”) — E% by

T
o ST — s)v(s)ds, vcCT,,
SR N A RC DR y

‘0 , otherwise .
Then there exists §; : P(R) — En (i =1,2,---,n) such
that
T —_—
~ ST — s)vi(s)ds, wv(s) C T,
)= d [ SET s, u()
0, otherwise
where u; is projection of u to axis X;, (1 = 1,--- ,n) re-

spectively and there exists g% (j =1, 7)
T
Git(va) = /0 S (T — s)vu(s)ds,
vi(s) € [ugi(s), ui(s)],
2 (vir) = /0 " ST = syour(s)ds

vir(s) € [u%(s), ugr(s)] .
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We assume that g}, g¢. are bijective mappings.
Hence a-level of u(s) are

I
s &
—_ ‘w
g =
iy Q

H[uzl (S uzr

(@) (=" — g(ts, ta, -,

— S(T)(z0)31),
(gz'r) 1(('/21 —g(t17t2;"'

i
A

"
=

tp, 2(-)))il

fi
I

v tpr 2(-)))ir
S (T)(z0)5y) -

Thus we can be introduced (s) of nonlinear system
[u(s)]*
H ui(s)]”
i=1

=H (ﬁ)_l (‘TI _g(t17t27"' )tzhw(')))g

%

- [Teo), o)

i=1

[

— 83(T) (o) — / SS(T — 8)£5 (s, 2%(s))ds ,
@) st ()5
T .

~ S (TY(zo)ir — /o S (T — 8) fir (s, 15(s))ds

(.’L‘ —g(tlat27 e

Then substituting this expression into the (EI.S.) yields
a—level of z(T). Foreachi =1, --- ,n,

[x:(T)]*

= SS(T)(:DO "g(tht?a . tpaw(')))g;

/s,a’ §)13 (s, 23(s))ds

4 / ST — )@ (@ — gltr,tar - tpr()G
0
- S(T)(EO _g(tlitQ) o atpaz()))(z);
T
- / SS(T — 5)£3 (s, 25(s))ds ds,
S?T(T)(xo - g(t17t2) Tt 7%:-’”(')))%

T
+ / SE(T — 5)f2(s,2%(s))ds
0

+ / SET - $)@2) ™ (@ — gltr ta, - 1 tp 2())5
1]
- ﬁ‘(T)(IO -g(tht?:"' atpvm(')))gr
/ S 8)fir(s,z5n(s))ds ds
= S3(T)(zo ~ gltr, ta, -ty 2()))5

T
n / SE(T — 8)£5 (s, 25i(s))ds
0

18

+35 @7 @ - gt ta,
= Si(T) (o — g(t1,ta,- - ,tp, 2(1))3

/ S3(T ~ 8)f(s,25%(s))ds |
Sir(T)(IO - g(tlv t2, - »tpvx(')))gr

T
n / SE(T — 5)£(s, 5 (s))ds
(4]

b, 2()))it

+35 @7 @ gt te, - te,3()5
= S5 (THxo — g(tr,ta, -+ tp, 2(-))ir

— /T ST — 5) fir(s,xin(8))ds
0

= [(xl - g(t17t27” ) ytp,I(')))?i,
(&" — g(tr, ta, -+

stps 2(4)))i]”

7tpr -’13()));1,‘]
= [(xl - g(thtza ot
Therefore

n

[z(n®

=1
:H[(ml - g(t17t27 e
i=1

:[3:1 - g(t1, ta, -

(D))" =

v tp, ()]
v tor ()]

‘We now set

®ux(t)

=S(t)(fb‘0 - g(tlyt% SRR N m()))

+/0 S(t — s)f(s,z(s))ds

t
+ [ 8- ot gt ta 50
0
- S(T)(IL‘O - g(t17t27 T 7tp>w(’)))
T
—/ S(T — s)f(s,z(s))ds ds
0
where the fuzzy mappings g~ ! satisfied above statements.
Notice that ®z(T) =, z! — g(t1,t2, - ,tp, z(-)),
which means that the control u(t) steers the (F.C.S.) from
the origine to z! — g(t1,t2, -+ ,tp,x(:)) in time T pro-

vided we can obtain a fixed point of the nonlinear operator
.

Assume that the following hypotheses:
(H1) (F.C.S. 1) is exact controllable.
(H2) Inhomogeneous term f : [0,T] x B}, — EY; satisfies
a global Lipschitz condition, there exists a finite constant
k; > 0 such that

du [fi(s,m(s)%, [fi(s,3:(s))]"
<kidu [2:(s)], [yi(s)]

forall z;(s),y:(s) € Exyand f; : [0,T| X Exy — EN (i =
1,---,n) is the i-th projection of f.
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(H3) g : [0,T]? x ER, — EY}, satisfies a global Lipschitz
condition, there exists a finite constant L; > 0 such that

dn [gi(t17 t2a ce 7tP7 zi('))]a7 [gi(tly t2, - 7tP7 yl())]a
SLidu [2:(s)]% [yi(s)]®

for all z;(s),y:(s) € Eyand g; : [0,T|P X Ey — En
(i =1,---,n) is the i-th projection of g.

(H4) ((1+ 2c)L; + 2ck:T)) < 1.

Theorem 3.1 Suppose that hypotheses (H1),
(H2), (H3) and (H4) are satisfied. Then the state

of the (FLS.) can be steered from the initial value

zo — g(ti,t2, - ,tp,x(-)) to any final state z' —

g(t1,ta, -+ ,tp,z(-)) in time T.

Proof The continuous function from C([0, T : E%;) to

itself defined by
<I>m(t) ZQS(t)(CUO - g(tla t2,- -, tp, ZIZ()))

+ /Ot S(t — s)f(s,z(s))ds

+/Ot St—8)g " 3 —gltr,ta, ,tp,z())
— S(T)(zo — glt1, t2, - ,tp, ()

- /T S(T — s)f(s,z(s))ds ds.

There exist ®; (i = 1,--- ,n) is continuous function from
C([0,T] : En) toitself. Letz,y € C([0,T] : EY) there
existx;,y; (i=1,--- ,n) € C([0,T] : En).

du [Qizi(t)]”, [Piye(t)]”
=dy Sl(t)(.’to - g(th ta,--- 1t:D) l‘()))z

+ Su(t - 9)fuls,e(s))ds

+ / St - sT (@ = gttt 2O
= Si(T) (w0 — g(tr, b2, 4 tp, ()i
-/ U ST - 9 fils,ma(s)ds ds

si(t)(xoo— gt t2, - tp,y()))s
+ / it — )5, i(s))ds
+ 8095 @ - gttty
= Si(T)(xo — g(tr, 2, 1 tp,y(+)))s
_ /OT ST — 8)fi(s,yi(s))ds - ds

<dg  Sit)(mo — g(tr,ta, - tpx())): %,

Si(t) (o — g(t1,t2,- - tp, y(-)))s ©

+dy /t Si(t — s) fi(s,z:(s))ds ©,

/0 Si(t — 5) (s, yi(s))ds

T
v d /si(:r—s)g;l(gi(tl,tz,.--,tp,x(~))

0

+Si(T)gi(t17t21"' 7tp7$('))

+ / ST = 8) (s, za(s))ds)ds °,

T

/0 ST — )57 (gt b2, 1t u())

+ Si(T)giltr, b2, ,tp,y())

+/0 Si(T — 8)fi(s,y:(s))ds)ds
7t177m(')))i aa
Si(t)(mo - g(tlat27 ce atpvy(')))i “

+du /Ot Si(t — s)fi(s,z:(s)) “ds,

<dg Si(t)(zo — g(t1,t2,- -

/0 Si(t — 5)fi(s,is(s)) “ds

+du GG (gilts,ta, - tp, 3(0))
+ Si(T)gi(ta, ta, -« ,tp, ()

- " ST = ) fuls,mu())ds))

gi(giﬁl(gi(tlat% o )tpvy('))
+ SI(T)gl(tla tay- - 7tP7 y())

e .
+ [ SUT = 5) s (o)) °
0
<dg Si(t)gi(tht?a"' 7t177m(')) a’
Si(t)g’i(tlat21"' 7tP7y(')) “
+/t du  Si(t - S)fz(symz(s)) a’
Si(t = ) fils,pils)) © ds
+du gi(tlyt27"' >tpax(')) ‘17
g(t15t27 e ’tpay(’)) “
+dy Si(T)gz‘(tl,t%"‘ 7tP7$(')) a’
SiT)gi(tr,ta, -, tpyy())
T
+/0 du Si(T—S)fi(S,zi(s)) a’

ST — s) fi(s,yi(s)) © ds
<cLidm [2:(t))%, [y:($)]*

+ cks / der [ze(s)]" [y ()]° ds
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+ Lidy [z:(t)], [p:(8)]™ + cLada [2:(8)])%, [5:(£)]°

T
+mAdHWMRM@P%

< (1 +20)Ls + chi(t + T) du [wa(e)]™, [y: ()]
Thus
doo @z, Py

= sup dm [®z]%,[®y]"
o€(0,1]

sup
a€(0,1] { =
< (14 2e)Li+cki(t+T)

dar ([ (0] ()% 2}

i=

"

dy ([®izi]”, [Pivi]™) 2}1/2

X sup {
a€e(0,1)

= (1 + 2C)Li + C}Ci(t + T) doo(.’L‘, y)
Hence

Hy, &z,Py = sup do Pz,Py

te(0,7]

sup (1+4+2¢)Li + cki(t +T) doo(z,y)
te[0,T]

(1 + 2¢)L; + 2ck;T)

IN

IN

sup doo(z,y)
t€{0,T]

(14 2¢)L; + 2¢k;T) Hi(z,y).

f

Since ((1+2¢)L; + 2¢k;T)) < 1, @ is a contraction map-
ping. By the Banach fixed point theorem, (F.C.S.) has a
unique fixed point z € C([0,T] : E},).
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