References
- Barash, Y. and Friedman, N. (2002). Context-Specific Bayesian Clustering for Gene Expression Data, Journal of Computational Biology, 9, 169-191 https://doi.org/10.1089/10665270252935403
- Chen, G. et al. (2002). Evaluation and comparison of clustering algorithms in analyzing ES cell gene expression data, Statistica Sinica, 12, 241-262
- Chu, S., DeRisi, J. et al., (1998). The transcriptional program of sporulation in budding yeast, Science, 282, 699-705 https://doi.org/10.1126/science.282.5389.699
- Datta, S. and Datta, S. (2003). Comparisons and validation of statistical clustering techniques for microarray gene expression data, Bioinformatics, 19, 459-466 https://doi.org/10.1093/bioinformatics/btg025
- Dudoit, S., Yang, Y. H., Speed, T. and Callow, M. J. (2002). Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments, Statistica Sinica, 12, 111-139
- Efron, B. (1982). The jackknife, the bootsrap, and other resampling plans, Society for industrial and applied mathematics
- Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns, Proc. Natl Acad. Sci., 95, 14863-14868
- Goldstein, D. R, Conlon, E. and Ghosh, D. (2002). Statistical issues in the clustering of gene expression data, Statistica Sinica, 12, 219-240
- Ghosh, D. and Chinnaiyan, A. M. (2002). Mixture modelling of gene expression data from microarray experiments, Bioinformatics, 18, 275-286 https://doi.org/10.1093/bioinformatics/18.2.275
- Guthke, R, Schmidt-Heck, W., Hahn, D. and Pfaff, M. (2000). Gene expression data mining for functional genomics, Proceedings of European Symposium on Intelligent Techniques (EIST 2000), Aachen, Germany, 170-177
- Hartigan, J. A. and Wong, M. A. (1979). A k-means clustering algorithm. Applied Statistics. Vol 28. 100-108 https://doi.org/10.2307/2346830
- Hastie, T., Tibshirani, R et al. (2000). Gene shaving as a method for identifying distinct sets of genes with similar expression patterns, Genome Biology, 1, research003
- Hihara, Y., Kamei, A., Kanehisa, M., Kaplan, A. and Ikeuchi, M. (2001). DNA microarray analysis of cyanobacterial gene expression during acclimation to high light, The Plant Cell, 13, 793-806 https://doi.org/10.2307/3871341
- Hong, F. and Li, H. (2004). B-spline Based Empirical Bayes Methods for Identifying Genes with Different Time-course Expression Profiles. submitted
- Kaufman, L. and Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis, New York, John Wiley
- Kasturi, J., Acharya, R. and Ramanathan, R. (2003). An information theoretic approach for analyzing temporal patterns of gene expression, Bioinformatics, 19, 449-458 https://doi.org/10.1093/bioinformatics/btg020
- Kerr, M. K. and Churchill, G. A. (2001). Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments, Proc. Natl Acad. Sci., 98, 8961-8965
- Kim, S. Y., Choi, T. M. and Bae J. S. (2005). Fuzzy types clustering for microarray data, International Journal of Computational Intelligence, bf 2, 12-15
- Kim, S. Y., Lee, J. W. and Bae J. S. (2006). Effect of data normalization on fuzzy clustering of DNA microarray data., BMC Bioinformatics, To appear
- Kim, S. Y., Lee, J. W. and Shon, I. S. (2006). Comparison of various statistical methods for identifying differential gene expression in replicated microarray data, Statistical Methods in Medical Research, 15, 1-18 https://doi.org/10.1191/0962280206sm431ed
- Laura, L. and Owen, A. (2002). Plaid models for gene expression data, Statistica Sinica, 12, 61-86
- Lonnstedt, I. and Speed, T. P. (2002). Replicated microarray data, Statistica Sinica, 12, 31-46
- Luan, Y. and Li, H. (2003). Clustering of time-course gene expression data using a mixedeffects model with B-splines, Bioinformatics, 19, 474-482 https://doi.org/10.1093/bioinformatics/btg014
- McLachlan, G. J., Bean, R. W. and Peel, D. (2002). A mixture model based approach to the clustering of microarray expression data, Bioinformatics, 18, 1-10 https://doi.org/10.1093/bioinformatics/18.1.1
- Moon et al. (2002). Mice Lacking Paternally Expressed Pref-1/Dlk1 Display Growth Retardation and Accelerated Adiposity, Molecular and Cellular Biology, 22, 5585-5592 https://doi.org/10.1128/MCB.22.15.5585-5592.2002
- Smyth, G. K., Yang, Y. H. and Speed, T. (2003). Statistical issues in cDNA microarray data analysis, in Functional Genomics: Methods and Protocols, eds
- Spellman, P. T., Sherlock, G., Zhang, M. Q. et al., (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization, Mol. Biol. Cell., 12, 3273-3297
- Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S. and Golub, T. R. (1999). Interpreting patterns of gene expression with selforganizing maps:methods and application to hematopoietic differentiation, Proceedings of the National Academy of Sciences, 96, 2907-2912
- Tusher, V., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response, Proceedings of the National Academy of Sciences, 98, 5116-5124
- Waddell, P. and Kishino, H. (2000). Cluster inference methods and graphical models evaluated on NC160 microarray gene expression data, Genome Informatics, 11, 129-140
- Yeung, K., Haynor, D. R. and Ruzzo, W. L. (2001). Validating clustering for gene expression data, Bioinformatics, 17, 309-318 https://doi.org/10.1093/bioinformatics/17.4.309
- Yeung, K. Y., Fraley, C. Murua, A, Raftery, E. and Ruzzo, W. L. (2001). Model based clustering and data transformations for gene expression data, Bioinformatics, 17, 977-987 https://doi.org/10.1093/bioinformatics/17.10.977