참고문헌
- BIBI, A. AND OYET, A. (2002). 'A note on the properties of some time varying bilinear models', Statistics and Probability Letters, 58, 399-411 https://doi.org/10.1016/S0167-7152(02)00153-0
- CARRASCO, M. AND CHEN, X. (2002). 'Mixing and moment properties of various GARCH and stochastic volatility models', Econometric Theory, 18, 17-39 https://doi.org/10.1017/S0266466602181023
- CHANDA, K. C. (1992). 'Stationarity and central limit theorem associated with bilinear time series models', Journal of Time Series Analysis, 12, 301-313 https://doi.org/10.1111/j.1467-9892.1991.tb00085.x
- CHEN, M. AND AN, H. Z. (1998). 'A note on the stationarity and the existence of moments of the GARCH model', Statistica Sinica, 8, 505-510
- DOUKHAN, P. (1994). Mixing. Properties and examples, Lecture Notes in Statistics, 85, Springer-Verlag, New York
- ENGLE, R. F. (1982). 'Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation.', Econometrica, 50, 987-1008 https://doi.org/10.2307/1912773
- FRANCQ, C. (1999). 'ARMA models with bilinear innovations', Communications in Statistics-Stochastic models, 15, 29-52 https://doi.org/10.1080/15326349908807524
- GRANGER, C. W. J. AND ANDERSEN, A. P. (1978). An Introduction to Bilinear Time Series Models, Vandenhoeck and Ruprecht, Gottingen
- HAMILTON, J. D. (1989). 'A new approach to the economic analysis of nonstationary time series and the business cycle', Econometrica, 57, 357-384 https://doi.org/10.2307/1912559
- LIU, J. (1992). 'On stationarity and asymptotic inference of bilinear time series models', Statistica Sinica, 2, 479-494
- LIU, J. AND BROCKWELL, P. J. (1988). 'On the general bilinear time series model', Journal of Applied Probability, 25, 553-564 https://doi.org/10.2307/3213984
- MEYN, S. P. AND TWEEDIE, R. L. (1993). Markov Chains and Stochastic Stability, Communications and Control Engineering Series, Springer-Verlag, London
- PHAM, D. T. (1985). 'Bilinear Markovian representation and bilinear models', Stochastic Processes and Their Applications, 20, 295-306 https://doi.org/10.1016/0304-4149(85)90216-9
- PHAM, D. T. (1986). 'The mixing property of bilinear and generalised random coefficient autoregressive models.', Stochastic Processes and Their Applications, 23, 291-300 https://doi.org/10.1016/0304-4149(86)90042-6
- RAO, M. BHASKARA, SUBBA RAO, T. AND WALKER, A. M. (1983). 'On the existence of some bilinear time series models', Journal of Time Series Analysis, 4, 95-110 https://doi.org/10.1111/j.1467-9892.1983.tb00362.x
- SUBBA RAO, T. (1981). 'On the theory of bilinear time series models', Journal of Royal Statistical Society, Ser. B, 43, 244-255
- SUBBA RAO, T. AND GABR, M. M. (1984). An Introduction to Bispectral Analysis and Bilinear Time Series Models, Lecture Notes in Statistics, 24, Springer-Verlag, New York
- TERDIK, G. (1999). Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis. A Frequency Domain Approach, Lecture Notes in Statistics, 142, Springer-Verlag, New York
- TONG, H. (1978). 'On a threshold model', In Pattern Recognition and Signal Processing (C. H. Chen, ed.), Sijthoff and Noordhoff, Amsterdam
- TONG, H. (1981). 'A note on a Markov bilinear stochastic process in discrete time', Journal of Time Series Analysis, 2, 279-284 https://doi.org/10.1111/j.1467-9892.1981.tb00326.x
- WEISS, A. A. (1986). 'ARCH and bilinear time series models: Comparison and combination', Journal of Business and Economic Statistics, 4, 59-70 https://doi.org/10.2307/1391387