Gentisyl Alcohol, an Antioxidant from Microbial Metabolite, Induces Angiogenesis In Vitro

  • Kim Hye-Jin (Chemical Genomics Laboratory, Department of Biotechnology, College of Engineering, Yonsei University, Department of Bioscience and Biotechnology, Institute of Bioscience, Sejong University) ;
  • Kim Jin-Hee (Immune Modulator Research Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee Choong-Hwan (Immune Modulator Research Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kwon Ho-Jeong (Chemical Genomics Laboratory, Department of Biotechnology, College of Engineering, Yonsei University)
  • Published : 2006.03.01

Abstract

Gentisyl alcohol isolated from Penicillium sp. has an antioxidative activity, protecting cells from oxidative stresses. From our in vitro angiogenesis assays with bovine aortic endothelial cells (BAECs), gentisyl alcohol was newly identified as a pro-angiogenic small molecule that induces new blood vessel formation of the cells. Gentisyl alcohol stimulated the proliferation of BAECs in a dose-dependent manner. Moreover, it induced in vitro angiogenesis of BAECs such as invasiveness, migration, and tube formation of the endothelial cells. Effects of gentisyl alcohol on invasion and tube formation were also dose-dependent. These results demonstrate that gentisyl alcohol could affect the angiogenic phenotypes of endothelial cells and be developed as a new small molecule with pro-angiogenic activity.

Keywords

References

  1. Alfaro, C., A. Urios, M. C. Gonzalez, P. Moya, and M. Blanco. 2003. Screening for metabolites from Penicillium novae-zeelandiae displaying radical-scavenging activity and oxidative mutagenicity: Isolation of gentisyl alcohol. Mutat. Res. 539: 187-194 https://doi.org/10.1016/S1383-5718(03)00166-9
  2. Folkman, J. 1995. Tumor angiogenesis in women with nodepositive breast cancer. Cancer J. Sci. Am. 1: 106
  3. Hanahan, D. and J. Folkman. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353-364 https://doi.org/10.1016/S0092-8674(00)80108-7
  4. Jung, H. J., H. B. Lee, C. J. Kim, J. Rho, R. J. Shin, and H. J. Kwon. 2003. Anti-angiogenic activity of Terpestacin, a bicyclo Sesterterpene from Embellisia chlamydospora. J. Antibiot. 56: 492-496 https://doi.org/10.7164/antibiotics.56.492
  5. Kim, J. H., D. H. Kim, M. R. Kim, H. J. Kwon, T. W. Oh, and C. H. Lee. 2005. Gentisyl alcohol inhibits apoptosis by suppressing of caspase activity induced by etoposide. J. Microbiol. Biotechnol. 15: 532-536
  6. Klagsbrun, M. and M. A. Moses. 1999. Molecular angiogenesis. Chem. Biol. 6: R217-R224 https://doi.org/10.1016/S1074-5521(99)80081-7
  7. Kwon, H. J., D. H. Kim, J. S. Shim, and J. W. Ahn. 2002. Apicularen A, macrolide from Chondromyces sp., inhibits growth factor induced in vitro angiogenesis. J. Microbiol. Biotechnol. 12: 702-705
  8. Kwon, H. J., J. H .Kim, H. J. Jung, Y. G. Kwon, M. Y. Kim, J. R. Rho, and J. Shin. 2001. Anti-angiogenic activity of acalycixenolide E, a novel marine natural product from Acalycigorgia inermis. J. Microbiol. Biotechnol. 11: 656- 662
  9. Kwon, H. J., J. S. Shim, J. H. Kim, H. Y. Cho, Y. N. Yum, S. H. Kim, and J. H. Yu. 2002. Betulinic acid inhibits growth factor-induced in vivo angiogenesis via the modulation of mitochondrial function in endothelial cells. Jpn. J. Cancer Res. 93: 417-425 https://doi.org/10.1111/j.1349-7006.2002.tb01273.x
  10. Lakka, S. S., C. S. Gondi, N. Yanamandra, W. C. Olivero, D. H. Dinh, M. Gujrati, and J. S. Rao. 2004. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 23: 4681-4689 https://doi.org/10.1038/sj.onc.1207616
  11. Lim, H., M. K. Kim, Y. H. Cho, J. M. Kim, Y. Lim, and C. H. Lee. 2004. Inhibition of cell cycle progression and induction of apoptosis in HeLa cells by HY-558-1, a novel CDK inhibitor isolated from Penicillium minioluteum F558. J. Microbiol. Biotechnol. 14: 978-984
  12. Maulik, N. and D. K. Das. 2002. Redox signaling in vascular angiogenesis. Free Radic. Biol. Med. 33: 1047-1060 https://doi.org/10.1016/S0891-5849(02)01005-5
  13. McNamara, D. A., J. H. Harmey, T. N. Walsh, H. P. Redmond, and D. J. Bouchier-Hayes. 1998. Significance of angiogenesis in cancer therapy. Br. J. Surg. 85: 1044-1055 https://doi.org/10.1046/j.1365-2168.1998.00816.x
  14. Monte, M., L. E. Davel, and E. Sacerdote de Lustig. 1997. Hydrogen peroxide is involved in lymphocyte activation mechanisms to induce angiogenesis. Eur. J. Cancer 33: 676-682 https://doi.org/10.1016/S0959-8049(96)00506-0
  15. Oh, S., M. Kim, J. J. Churey, and R. W. Worobo. 2003. Purification and characterization of an antilisterial bacteriocin produced by Leuconostoc sp. W65. J. Microbiol. Biotechnol. 13: 680-686
  16. Oliver, V. K., A. M. Patton, S. Desai, D. Lorang, S. K. Libutti, and E. C. Kohn. 2003. Regulation of the proangiogenic microenvironment by carboxyamido-triazole. J. Cell Physiol. 197: 139-148 https://doi.org/10.1002/jcp.10350
  17. Rhee, K. H. 2003. Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae. J. Microbiol. Biotechnol. 13: 984-988
  18. Risau, W. 1997. Mechanisms of angiogenesis. Nature 386: 671-674 https://doi.org/10.1038/386671a0
  19. Sata, M., H. Perlman, D. A. Muruve, M. Silver, M. Ikebe, T. A. Libermann, P. Oettgen, and K. Walsh. 1998. Fas ligand gene transfer to the vessel wall inhibits neointima formation and overrides the adenovirus-mediated T cell response. Proc. Natl. Acad. Sci. USA 95: 1213-1217
  20. Sato, Y. and D. B. Rifkin. 1989. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: Activation of a latent transforming growth factor-beta-1-like molecule by plasmin during co-culture. J. Cell Biol. 109: 309-315 https://doi.org/10.1083/jcb.109.1.309
  21. Sohng, J. K., H. C. Lee, K. Liou, E. B. Lee, S. Y. Kang, and J. S. Woo. 2003. Cystocin, a novel antibiotic, produced by Streptomyces sp. GCA0001: Production and characterization of cystocin. J. Microbiol. Biotechnol. 13: 483-486
  22. Webster, K. A. 2003. Therapeutic angiogenesis: A complex problem requiring a sophisticated approach. Cardiovasc. Toxicol. 3: 283-298 https://doi.org/10.1385/CT:3:3:283