참고문헌
- Bangera, M. G. and L. S. Thomashow. 1999. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J. Bacteriol. 181: 3155- 3163
- Becker, J. O. and R. J. Cook. 1988. Role of siderophores in suppression of Pythium species and production of increasedgrowth response of wheat by fluorescent pseudomonads. Phytopathology 78: 778-782 https://doi.org/10.1094/Phyto-78-778
- Bender, C. L., V. Rangaswamy, and J. Loper. 1999. Polyketide production by plant-associated pseudomonads. Annu. Rev. Phytopathol. 37: 175-196 https://doi.org/10.1146/annurev.phyto.37.1.175
- Bonas, U., R. E. Stall, and B. J. Staskawicz. 1989. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas capestris pv. vesicatoria. Mol. Gen. Genet. 218: 127-136 https://doi.org/10.1007/BF00330575
- Dessaux, Y., J. Tempe, and S. K. Farrand. 1987. Genetic analysis of mannityl opine catabolism in octopine-type Agrobacterium tumefaciens strain 15955. Mol. Gen. Genet. 208: 301-308 https://doi.org/10.1007/BF00330457
- Figurski, D. H. and D. R. Helinski. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76: 1648-1652
- Gish, W. and D. J. States. 1993. Identification of protein coding regions by database similarity search. Nat. Genet. 3: 266-272 https://doi.org/10.1038/ng0393-266
- Hammer, P. E., D. S. Hill, S. T. Lam, K.-H. Van Pee, and J. M. Ligon. 1997. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl. Environ. Microbiol. 63: 2147-2154
- Handelsman, J. and E. V. Stabb. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8: 1855-1869 https://doi.org/10.1105/tpc.8.10.1855
- Howell, C. R. and R. D. Stipanovic. 1979. Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with antibiotics produced by the bacterium. Phytopathology 69: 480-482 https://doi.org/10.1094/Phyto-69-480
- Hu, H. B., Y. Q. Xu, F. Chen, X. H. Zhang, and B. K. Hur. 2005. Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine 1- carboxylic acid and pyoluteorin. J. Microbiol. Biotechnol. 15: 86-90
- Kang, J. H. and C. S. Park. 1997. Colonization pattern of fluorescens Pseudomonads on the cucumber seed and rhizoplane. Korean J. Plant Pathol. 13: 160-166
- Katiyar, V. and R. Goel. 2004. Improved plant growth from seed bacterization using siderphore overproducing cold resistant mutant Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657
- Keel, C., U. Schnider, M. Maurhofer, C. Voisard, J. Laville, U. Burger, P. Wirthner, D. Hass, and G. Defago. 1992. Suppression of root diseases by Pseudomonas fluorescens CHAO: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe Interact. 5: 4-13 https://doi.org/10.1094/MPMI-5-004
- Kim, J. W., B.-K. Park, I. Hwang, and C. S. Park. 1998. Antifungal activity of root colonizing Pseudomonas fluorescens MC07 is responsible for its disease suppression ability. Korean J. Plant Pathol. 14: 606-611
- Kim, J., J.-G. Kim, B.-K. Park, O. Choi, C. S. Park, and I. Hwang. 2003. Identification of genes for biosynthesis of antibacterial compound from Pseudomonas fluorescens B16, and its activity against Ralstonia solanacearum. J. Microbiol. Biotechnol. 13: 292-300
- Kirner, S., E. Hammer, and J. M. Ligon. 1998. Functions encoded by pyrrolnitirin biosynthetic genes from Pseudomonas fluorecsens. J. Bacteriol. 180: 1939-1943
- Lee, E.-T., S.-K. Lim, D.-H. Nam, Y.-H. Khang, and S.-D. Kim. 2003. Pyoverdin2112 of Pseudomonas fluorescens 2112 inhibits Phytophthora capsici, a red-pepper blight-causing fungus. J. Microbiol. Biotechnol. 13: 415-421 https://doi.org/10.1159/000075129
- Mavrodi, D. V., V. N. Ksenzenko, R. F. Bonsall, R. J. Cook, A. M. Boronin, and L. S. Thomashow. 1998. A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J. Bacteriol. 180: 2541- 2548
- Maurhofer, M., C. Keel, U. Schnider, C. Voisard, D. Haas, and G. Defago. 1992. Influence of enhanced antibiotics production in Pseudomonas fluorescens strain CHAO on its disease suppressive capacity. Phytopathology 82: 190- 195 https://doi.org/10.1094/Phyto-82-190
- Park, C. S., T. C. Paulitz, and R. Baker. 1988. Biocontrol of Fusarium wilt of cucumbers resulting from interactions between Pseudomonas putida and nonpathogenic isolates of Fusarium oxysporum. Phytopathology 78: 190-194 https://doi.org/10.1094/Phyto-78-190
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A
- Scher, F. M. and R. Baker. 1980. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72: 1567-1573 https://doi.org/10.1094/Phyto-72-1567
- Simon, R. A. 1983. Broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Biotechnology 1: 784-791 https://doi.org/10.1038/nbt1183-784
-
Stachel, S. E., G. An, C. Flores, and E. W. Nester. 1985. A Tn3lacz transposon for the random generation of
$\beta$ -galactosidase gene fusions: Application to the analysis of gene expression in Agrobacterium. EMBO J. 4: 891- 898 - Staskawicz, B., D. Dahlberk, N. Keen, and C. Napoli. 1987. Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringea pv. glycinea. J. Bacteriol. 169: 5789-5794 https://doi.org/10.1128/jb.169.12.5789-5794.1987
- Thomas, F. C., W. Chin-A, and B. Guido. 2000. Root colonization by phenazine-1-carboxamide producing bacterium Pseudomonas chlororaphis PCL 1391 is essential for biocontrol of tomato foot and root rot. Mol. Plant-Microbe Interact. 12: 1340-1345
- Thomashow, L. S. 1996. Biological control of plant root pathogens. Curr. Opin. Biotechnol. 7: 343-347 https://doi.org/10.1016/S0958-1669(96)80042-5
- Thomashow, L. S. and D. M. Weller. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 179: 3499-3508
- Thomashow, L. S. and D. M. Weller. 1995. Current concept in the use of introduced bacteria for biological disease control. Mol. Plant-Microbe Interact. 1: 187-235
- Van Loon, L. C., M. Bakker, and J. Pieterse. 1998. Systemic resistance introduced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483 https://doi.org/10.1146/annurev.phyto.36.1.453
- Van Pee, K. H. and J. M. Ligon. 2000. Biosynthesis of pyrrolnitrin and other phenylpyrrole derivatives by bacteria. Nat. Prod. Rep. 17: 157-164 https://doi.org/10.1039/a902138h
- Voisard, C., C. Keel, D. Haas, and G. Defago. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8: 351-358
- Yeom, J. R. and C. S. Park. 1995. Enhancement of plant growth and suppression of damping-off of cucumber by low temperature growing Pseudomonas fluorescens isolates. Korean J. Plant Pathol. 11: 252-257