Molecular Characterization of Biosynthetic Genes of an Antifungal Compound Produced by Pseudomonas fluorescens MC07

  • Kim Jin-Woo (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Kim Eun-Ha (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Kang Yong-Sung (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Choi Ok-Hee (Division of Plant Resources and Environment, Gyeongsang National University) ;
  • Park Chang-Seuk (Division of Plant Resources and Environment, Gyeongsang National University) ;
  • Hwang In-Gyu (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
  • Published : 2006.03.01

Abstract

Pseudomonas fluorescens MC07 is a growth-promoting rhizobacterium that suppresses mycelial growth in fungi such as Rhizoctonia solani, Pythium ultimum, Fusarium oxysporum, and Phytophthora capsici. To determine the role of the bacterium's antifungal activity in disease suppression, we screened 2,500 colonies generated by Tn5lacZ insertions, and isolated a mutant 157 that had lost antifungal activity. The EcoRI fragment carrying Tn5lacZ was cloned into pBluescript II SK(+) and used as a probe to isolate wild-type clones from a genomic library of the parent strain, MC07. Two overlapping cosmid clones, pEH4 and pEH5, that had hybridized with the mutant clone were isolated. pEH4 conferred antifungal activity to the heterologous host P.fluorescens strain 1855.344, whereas pEH5 did not. Through transposon mutagenesis of pEH4 and complementation analyses, we delineated the 14.7-kb DNA region that is responsible for the biosynthesis of an antifungal compound. DNA sequence analysis of the region identified 11 possible open reading frames (ORF), ORF1 through ORF11. A BLAST search of each putative protein implied that the proteins may be involved in an antifungal activity similar to polyketides.

Keywords

References

  1. Bangera, M. G. and L. S. Thomashow. 1999. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J. Bacteriol. 181: 3155- 3163
  2. Becker, J. O. and R. J. Cook. 1988. Role of siderophores in suppression of Pythium species and production of increasedgrowth response of wheat by fluorescent pseudomonads. Phytopathology 78: 778-782 https://doi.org/10.1094/Phyto-78-778
  3. Bender, C. L., V. Rangaswamy, and J. Loper. 1999. Polyketide production by plant-associated pseudomonads. Annu. Rev. Phytopathol. 37: 175-196 https://doi.org/10.1146/annurev.phyto.37.1.175
  4. Bonas, U., R. E. Stall, and B. J. Staskawicz. 1989. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas capestris pv. vesicatoria. Mol. Gen. Genet. 218: 127-136 https://doi.org/10.1007/BF00330575
  5. Dessaux, Y., J. Tempe, and S. K. Farrand. 1987. Genetic analysis of mannityl opine catabolism in octopine-type Agrobacterium tumefaciens strain 15955. Mol. Gen. Genet. 208: 301-308 https://doi.org/10.1007/BF00330457
  6. Figurski, D. H. and D. R. Helinski. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76: 1648-1652
  7. Gish, W. and D. J. States. 1993. Identification of protein coding regions by database similarity search. Nat. Genet. 3: 266-272 https://doi.org/10.1038/ng0393-266
  8. Hammer, P. E., D. S. Hill, S. T. Lam, K.-H. Van Pee, and J. M. Ligon. 1997. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl. Environ. Microbiol. 63: 2147-2154
  9. Handelsman, J. and E. V. Stabb. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8: 1855-1869 https://doi.org/10.1105/tpc.8.10.1855
  10. Howell, C. R. and R. D. Stipanovic. 1979. Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with antibiotics produced by the bacterium. Phytopathology 69: 480-482 https://doi.org/10.1094/Phyto-69-480
  11. Hu, H. B., Y. Q. Xu, F. Chen, X. H. Zhang, and B. K. Hur. 2005. Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine 1- carboxylic acid and pyoluteorin. J. Microbiol. Biotechnol. 15: 86-90
  12. Kang, J. H. and C. S. Park. 1997. Colonization pattern of fluorescens Pseudomonads on the cucumber seed and rhizoplane. Korean J. Plant Pathol. 13: 160-166
  13. Katiyar, V. and R. Goel. 2004. Improved plant growth from seed bacterization using siderphore overproducing cold resistant mutant Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657
  14. Keel, C., U. Schnider, M. Maurhofer, C. Voisard, J. Laville, U. Burger, P. Wirthner, D. Hass, and G. Defago. 1992. Suppression of root diseases by Pseudomonas fluorescens CHAO: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe Interact. 5: 4-13 https://doi.org/10.1094/MPMI-5-004
  15. Kim, J. W., B.-K. Park, I. Hwang, and C. S. Park. 1998. Antifungal activity of root colonizing Pseudomonas fluorescens MC07 is responsible for its disease suppression ability. Korean J. Plant Pathol. 14: 606-611
  16. Kim, J., J.-G. Kim, B.-K. Park, O. Choi, C. S. Park, and I. Hwang. 2003. Identification of genes for biosynthesis of antibacterial compound from Pseudomonas fluorescens B16, and its activity against Ralstonia solanacearum. J. Microbiol. Biotechnol. 13: 292-300
  17. Kirner, S., E. Hammer, and J. M. Ligon. 1998. Functions encoded by pyrrolnitirin biosynthetic genes from Pseudomonas fluorecsens. J. Bacteriol. 180: 1939-1943
  18. Lee, E.-T., S.-K. Lim, D.-H. Nam, Y.-H. Khang, and S.-D. Kim. 2003. Pyoverdin2112 of Pseudomonas fluorescens 2112 inhibits Phytophthora capsici, a red-pepper blight-causing fungus. J. Microbiol. Biotechnol. 13: 415-421 https://doi.org/10.1159/000075129
  19. Mavrodi, D. V., V. N. Ksenzenko, R. F. Bonsall, R. J. Cook, A. M. Boronin, and L. S. Thomashow. 1998. A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J. Bacteriol. 180: 2541- 2548
  20. Maurhofer, M., C. Keel, U. Schnider, C. Voisard, D. Haas, and G. Defago. 1992. Influence of enhanced antibiotics production in Pseudomonas fluorescens strain CHAO on its disease suppressive capacity. Phytopathology 82: 190- 195 https://doi.org/10.1094/Phyto-82-190
  21. Park, C. S., T. C. Paulitz, and R. Baker. 1988. Biocontrol of Fusarium wilt of cucumbers resulting from interactions between Pseudomonas putida and nonpathogenic isolates of Fusarium oxysporum. Phytopathology 78: 190-194 https://doi.org/10.1094/Phyto-78-190
  22. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A
  23. Scher, F. M. and R. Baker. 1980. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72: 1567-1573 https://doi.org/10.1094/Phyto-72-1567
  24. Simon, R. A. 1983. Broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Biotechnology 1: 784-791 https://doi.org/10.1038/nbt1183-784
  25. Stachel, S. E., G. An, C. Flores, and E. W. Nester. 1985. A Tn3lacz transposon for the random generation of $\beta$-galactosidase gene fusions: Application to the analysis of gene expression in Agrobacterium. EMBO J. 4: 891- 898
  26. Staskawicz, B., D. Dahlberk, N. Keen, and C. Napoli. 1987. Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringea pv. glycinea. J. Bacteriol. 169: 5789-5794 https://doi.org/10.1128/jb.169.12.5789-5794.1987
  27. Thomas, F. C., W. Chin-A, and B. Guido. 2000. Root colonization by phenazine-1-carboxamide producing bacterium Pseudomonas chlororaphis PCL 1391 is essential for biocontrol of tomato foot and root rot. Mol. Plant-Microbe Interact. 12: 1340-1345
  28. Thomashow, L. S. 1996. Biological control of plant root pathogens. Curr. Opin. Biotechnol. 7: 343-347 https://doi.org/10.1016/S0958-1669(96)80042-5
  29. Thomashow, L. S. and D. M. Weller. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 179: 3499-3508
  30. Thomashow, L. S. and D. M. Weller. 1995. Current concept in the use of introduced bacteria for biological disease control. Mol. Plant-Microbe Interact. 1: 187-235
  31. Van Loon, L. C., M. Bakker, and J. Pieterse. 1998. Systemic resistance introduced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483 https://doi.org/10.1146/annurev.phyto.36.1.453
  32. Van Pee, K. H. and J. M. Ligon. 2000. Biosynthesis of pyrrolnitrin and other phenylpyrrole derivatives by bacteria. Nat. Prod. Rep. 17: 157-164 https://doi.org/10.1039/a902138h
  33. Voisard, C., C. Keel, D. Haas, and G. Defago. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8: 351-358
  34. Yeom, J. R. and C. S. Park. 1995. Enhancement of plant growth and suppression of damping-off of cucumber by low temperature growing Pseudomonas fluorescens isolates. Korean J. Plant Pathol. 11: 252-257