Continuous Production of Pullulan by Aureobasidium pullulans HP-2001 with Feeding of High Concentration of Sucrose

  • Seo Hyung-Phil (Division of Applied Biotechnology, College of Natural Resources & Life Science, Dong-A University) ;
  • Jo Kang-Ik (Division of Applied Biotechnology, College of Natural Resources & Life Science, Dong-A University) ;
  • Son Chang-Woo (Division of Applied Biotechnology, College of Natural Resources & Life Science, Dong-A University) ;
  • Yang Jae-Kyoon (Division of Applied Biotechnology, College of Natural Resources & Life Science, Dong-A University) ;
  • Chung Chung-Han (Division of Applied Biotechnology, College of Natural Resources & Life Science, Dong-A University) ;
  • Nam Soo-Wan (Department of Biotechnology & Bioengineering, College of Engineering, Dong-Eui University) ;
  • Kim Sung-Koo (Department of Biotechnology & Bioengineering, College of Fisheries Science, Pukyung National University) ;
  • Lee Jin-Woo (Division of Applied Biotechnology, College of Natural Resources & Life Science, Dong-A University)
  • Published : 2006.03.01

Abstract

In this study, glucose, sucrose, and dextrin were found to be better carbon sources for the production of pullulan by Aureobasidium pullulans HP-2001. Maximal production of pullulan with 200 g/l sucrose as a carbon source was 54.2 g/l. The highest yield of pullulan from sucrose was 0.40, when the sugar concentration was 100 g/1. Optimal conditions for the continuous production of pullulan by A. pullulans HP-2001 in a 7-1 bioreactor were determined by studying the effects of composition of feed solution, dilution rate, and concentration of sucrose in the feed solution. Pullulan concentration and productivity with 100 g/l glucose and 2.5 g/l yeast extract were 38.1 g/l and 0.53 g/l h for 72 h, respectively, in a batch culture of A. pullulans HP-2001. When the substituted medium contained 100 g/l sucrose, 2.5 g/l yeast extract, and mineral salts, which is the same composition as the medium for the production of pullulan, the pullulan concentration and productivity were 74.9 g/l and 0.55 g/l h for 120 h, respectively. The production of pullulan at the steady state increased with a dilution rate up to 0.015/h, and its concentration was 78.4 g/l with a weight average molecular weight ($M_w$) of $4.0{\times}10^5$. Unlike a batch culture, however, the decline of the $M_w$ and the number average molecular weight ($M_n$) of pullulan was not found in the continuous culture of A. pullulans HP-2001. When the concentration of sucrose in the feed solution was 200 g/l, 113.5 g/l of pullulan was obtained at the steady state. The steady state was maintained longer in the continuous culture fed with the feed solution containing 200 g/l sucrose than when fed with the feed solutions containing either 100 or 150 g/l sucrose.

Keywords

References

  1. Aeschliman, A. and U. von Stockar. 1990. The effect of yeast extract supplementation on the production of lactic acid from whey permeate by Lactobacillus helveticus. Appl. Microbiol. Biotechnol. 32: 398-402 https://doi.org/10.1007/BF00903772
  2. Aremenate, P. M., F. Fava, and D. Kafkewitz. 1995. Effect of yeast extract on growth kinetics during aerobic biodegradation of chlorobenzoic acids. Biotechnol. Bioeng. 47: 227-283 https://doi.org/10.1002/bit.260470214
  3. Bae, S. G., Y. Sugano, and M. Shoda. 2005. Comparison of bacterial cellulose production in a jar fermentor between Acetobacter xylinum BPR2001 and its mutant, acetannonproducing strain EP1. J. Microbiol. Biotechnol. 15: 247- 253
  4. Barnett, C., A. Smith, B. Scanlon, and C. J. Israilides. 1999. Pullulan production by Aureobasidium pullulans growing on hydroysed potato starch waste. Carbohydr. Polym. 38: 203- 209 https://doi.org/10.1016/S0144-8617(98)00092-7
  5. Catley, B. J. and W. J. Whelan. 1971. Observations on the structure of pullulan. Arch. Biochem. Biophys. 143: 138- 142 https://doi.org/10.1016/0003-9861(71)90193-7
  6. Catley, B. J., A. Ramsay, and C. Servis. 1986. Observations on the structure of fungal extracellular-polysaccharide, pullulan. Carbohydr. Res. 153: 79-86 https://doi.org/10.1016/S0008-6215(00)90197-6
  7. Choi, D. B., S. H. Kang, Y. H. Song, K. H. Kwun, K. J. Jeong, and W. S. Cha. 2005. Exo-polysaccharide production in liquid culture of Pleurotus ferulae. J. Microbiol. Biotechnol. 15: 368-375
  8. Deshpade, M. S., V. B. Rale, and J. N. Lynch. 1992. Aureobasidium pullulans in applied microbiology: A status report. Enz. Microb. Technol. 14: 514-527 https://doi.org/10.1016/0141-0229(92)90122-5
  9. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  10. Hacking, A. J., I. W. F. Taylor, T. R. Jarman, and J. R. W. Govan. 1983. Alginate biosynthesis by Pseudomonas mendocina. J. Gen. Microbiol. 129: 3473-3480
  11. Kim, H. H., J. G. Na, Y. K. Chang, G. T. Chun, S. J. Lee, and Y. H. Jeong. 2004. Optimization of submerged culture conditions for mycelial growth and exopolysaccharides production by Agaricus blazei. J. Microbiol. Biotechnol. 14: 944-951
  12. Lacroix, C., A. Le Duy, G. Noel, and L. Choplin. 1985. Effect of pH on the batch fermentation of pullulan from sucrose medium. Biotechnol. Bioeng. 27: 202-207 https://doi.org/10.1002/bit.260270216
  13. Leathers, T. D. 1993. Substrate regulation and specificity of amylases from Aureobasidium strain NRRL Y-12,974. FEMS Microbiol. Lett. 110: 217-222 https://doi.org/10.1111/j.1574-6968.1993.tb06323.x
  14. LeDuy, A. and J. M. Boa. 1982. Pullulan production from peat hydrolyzate. Can. J. Microbiol. 29: 143-146 https://doi.org/10.1139/m83-023
  15. Lee, J. C., J. W. Min, D. J. Park, K. H. Son, K. H. Yoon, H. R. Park, Y. S. Park, M. G. Kown, J. M. Lee, and C. J. Kim. 2005. Large-scale fermentation of the production of teicoplanin from a mutant of Actinoplanes teichomyceticus. J. Microbiol. Biotechnol. 15: 787-791
  16. Lee, P. K., H. N. Chang, and B. H. Kim. 1989. Xanthan production by Xanthomonas campestris in continuous fermentation. Biotechnol. Lett. 11: 573-578 https://doi.org/10.1007/BF01040038
  17. Madi, N., B. McNeil, and L. M. Harvey. 1997. Effect of exogenous calcium on morphological development and biopolymer synthesis in the fungus Aureobasidum pullulans. Enz. Microb. Technol. 21: 102-107 https://doi.org/10.1016/S0141-0229(96)00232-3
  18. Mohammad, F. H. A., S. M. Badr-Eldin, O. M. El-Tayeb, and O. A. Abdel-Rahman. 1995. Polysaccharide production by Aureobasidium pullulans III. The influence of initial sucrose concentration on batch kinetics. Biomass Bioenergy 8: 121-129 https://doi.org/10.1016/0961-9534(95)00092-L
  19. Phillips, K. R., J. Pin, H. G. Lawford, B. Lavers, A. Kligerman, and G. R. Lawford. 1983. Production of curdlan type polysaccharide by Alcaligenes faecalis in batch and continuous culture. Can. J. Microbiol. 29: 1331-1338 https://doi.org/10.1139/m83-207
  20. Pollock, T. J., L. Thorne, and R. W. Armentrout. 1992. Isolation of new Aureobasidium strains that produce high molecular-weight pullulan with reduced pigmentation. Appl. Environ. Microbiol. 58: 877-883
  21. Poukas, T. 1998. Pretreatment of beet molasses to increase pullulan production. Process Biochem. 33: 805-810 https://doi.org/10.1016/S0032-9592(98)00048-X
  22. Roukas, T. 1999. Pullulan production from brewery wastes by Aureobasidium pullulans. World J. Microbiol. Biotechnol. 15: 447-450 https://doi.org/10.1023/A:1008996522115
  23. Reesley, M., B. B. Jorgensen, and O. B. Jorgensen. 1996. Exopolysaccharide production and morphology of Aureobasidium pullulans grown in continuous cultivation with varying ammonium-glucose ratio in the growth medium. J. Biotechnol. 51: 131-135 https://doi.org/10.1016/0168-1656(96)01590-8
  24. Ronen, M., H. Guterman, and Y. Shabtai. 2002. Monitoring and control of pullulan producing vision sensor. Biochem. Biophys. Methods 51: 243-249 https://doi.org/10.1016/S0165-022X(01)00182-8
  25. Schuster, R., E. Wenzig, and A. Mersmann. 1993. Production of the fungal exopolysaccharide pullulan by batch-wise and continuous fermentation. Appl. Microbiol. Biotechnol. 39: 155-158
  26. Seo, H. P., C. H. Chung, S. K. Kim, R. A. Gross, D. L. Kaplan, and J. W. Lee. 2004. Mass production of pullulan with optimized concentrations of carbon and nitrogen sources by Aureobasidium pullulans HP-2001 in a 100L bioreactor with the inner pressure. J. Microbiol. Biotechnol. 14: 237- 242
  27. Seo, H. P., C. W. Son, C. H. Chung, D. I. Jung, S. K. Kim, R. A. Gross, D. L. Kaplan, and J. W. Lee. 2003. Production of high molecular weight pullulan by Aureobasidium pullulans HP-2001 with soybean pomace as a nitrogen source. Biores. Technol. 95: 293-299
  28. Seviour, R. J. and B. Kristiansen. 1983. Effect of ammonium ion concentration of polysaccharide production by Aureobasidium pullulans in batch culture. Eur. J. Appl. Microbiol. Biotechnol. 17: 178-181 https://doi.org/10.1007/BF00505885
  29. Sharmila, M., K. Ramanand, and N. Serhunathan. 1989. Effect of yeast extract on the degradation of organophosphorous insecticides by soil enrichment and bacterial cultures. Can. J. Microbiol. 35: 1105-1110 https://doi.org/10.1139/m89-185
  30. Shin, Y. C., Y. H. Kim, H. S. Lee, Y. N. Kim, and S. M. Byun. 1987. Production of pullulan by fed-batch fermentation. Biotechnol. Lett. 9: 621-624 https://doi.org/10.1007/BF01033198
  31. Shin, Y. C., T. U. Kim, and S. M. Byun. 1993. Pullulan production from starch hydrolysate by Aureobasidium pullulans SH8646. J. Microbiol. Biotechnol. 3: 298-302
  32. Shin, H. T., S. Y. Baig, S. W. Lee, D. S. Suh, S. T. Kwon, Y. B. Lim, and J. H. Lee. 2004. Production of fructooligosaccharides from molasses by Aureobasidium pullulans cells. Biores. Technol. 93: 298-302
  33. Shuler, M. L. and F. Kargi. 2002. Bioprocess Engineering Basic Concept, pp. 245-247. 2nd Ed. Prentice-Hall, Englewood Cliffs, New Jersey, U.S.A
  34. Southgate, D. A. T. 1976. Determination of Food Carbohydrates. Applied Science Publishers, London
  35. Taguchi, R., Y. Kikuchi, Y. Sakano, and T. Kobayashi. 1973. Structural uniformity of pullulan produced by several strains of Pullularia pullulans. Agric. Biol. Chem. 37: 1583-1588 https://doi.org/10.1271/bbb1961.37.1583
  36. Ueda, S., K. Fusita, K. Komatsu, and Z. Nakashima. 1963. Polysaccharide produced by the genus Pullularia. Appl. Microbiol. 11: 211-215
  37. Vijayendra, S. V. N., D. Bansal, M. S. Prasad, and K. Nand. 2001. Jagger: A novel substrate for pullulan production by Aureobasidium pullulans CFR-77. Process Biochem. 37: 359-364 https://doi.org/10.1016/S0032-9592(01)00214-X
  38. Wiley, B. J., D. H. Ball, S. M. Arcidiacono, S. Sousa, J. M. Mayer, and D. L. Kaplan. 1993. Control of molecular weight distribution of the biopolymer pullulan produced by Aureobasidium pullulans. J. Environ. Polym. Degrad. 1: 3-9 https://doi.org/10.1007/BF01457648
  39. Yean, S. 1974. Pullulan and its applications. Process Biochem. 9: 7-22
  40. Youssef, F., T. Roukas, and C. G. Biliaderis. 1999. Pullulan production by a non-pigmented strain of Aureobasidum pullulans using batch and fed batch culture. Process Biochem. 34: 355-366 https://doi.org/10.1016/S0032-9592(98)00106-X