Proteome Analysis of Bacillus subtilis When Overproducing Secretory Protein

  • Jang Mi (Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Department of Microbiology, Inje University) ;
  • Park Byoung-Chul (Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee Do-Hee (Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kho Chang-Won (Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Cho Sa-Yeon (College of Pharmacy, Chung-Ang University) ;
  • Lee Baek-Rak (Department of Microbiology, Inje University) ;
  • Park Sung-Goo (Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2006.03.01

Abstract

Bacillus subtilis and related Bacillus species are frequently used as hosts for the mass production of recombinant proteins. Accordingly, this study examined the cellular response of B. subtilis to the overexpression of a soluble secretory protein. As such, the lichenase derived from B. cereus was overexpressed in B. subtilis, initially localized in the cytoplasm as a mature form and then secreted into the medium. Thereafter, the proteome of B. subtilis was analyzed using 2D electrophoresis and MALDI-TOF mass spectrometry. The expression of several heat-shock proteins, such as dnaK and groEL, was increased under this condition. In addition, manganese superoxide dismutase and NADH dehydrogenase were also upregulated in the lichenase-secreting B. subtilis. Therefore, it was concluded that the transient accumulation of a secreted protein in B. subtilis before secretion acted as a stress on the cell, which in turn induced the expression of various protective proteins.

Keywords

References

  1. Aristidou, A. A., K. Y. San, and G. N. Bennett. 1995. Metabolic engineering of Escherichia coli to enhance recombinant protein production through acetate reduction. Biotechnol. Prog. 11: 475-478 https://doi.org/10.1021/bp00034a019
  2. Choi, N. S., K. H. Yoo, J. H. Hahm, K. S. Yoon, K. T. Chang, B. H. Hyun, P. J. Maeng, and S. H. Kim. 2005. Purification and characterization of a new peptidase, bacillopeptidase DJ-2, having fibrinolytic activity produced by Bacillus sp. DJ-2 from Doen-Jang. J. Microbiol. Biotechnol. 15: 72-79
  3. Choi, N. S., S. K. Ju, T. Y. Lee, K. S. Yoon, K. T. Chang, and S. H. Kim. 2005. Miniscale identification and characterization of subtilisins from Bacillus sp. strains. J. Microbiol. Biotechnol. 15: 537-543
  4. Dong, H., L. Nilsson, and C. G. Kurland 1995. Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J. Bacteriol. 177: 1497- 1504 https://doi.org/10.1128/jb.177.6.1497-1504.1995
  5. Ferrari, E. and B. Miller. 1999. Bacillus expression: A Grampositive model, pp. 65-94. In Fernandez, J. M. and J. P. Hoeffler (eds.), Gene Expression Systems - Using Nature for the Art of Expression. San Diego, Calif.: Academic Press
  6. Gerth, U., A. Wipat, C. R. Harwood, N. Carter, P. T. Emmerson, and M. Hecker. 1996. Sequence and transcriptional analysis of clpX- a class III heat shock gene of Bacillus subtilis. Gene 181: 77-83 https://doi.org/10.1016/S0378-1119(96)00467-2
  7. Gharahdaghi, F., C. R. Weinberg, D. A. Meagher, B. S. Imai, and S. M. Mische. 1999. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis 20: 601-605 https://doi.org/10.1002/(SICI)1522-2683(19990301)20:3<601::AID-ELPS601>3.0.CO;2-6
  8. Goff, S. A. and A. L. Goldberg. 1985. Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell 41: 587-595 https://doi.org/10.1016/S0092-8674(85)80031-3
  9. Gottesman, S. 1996. Proteases and their targets in Escherichia coli. Annu. Rev. Genet. 30: 465-506 https://doi.org/10.1146/annurev.genet.30.1.465
  10. Harcum, S. W. and W. E. Bentley. 1999. Heat-shock and stringent responses have overlapping protease activity in Escherichia coli. Implications for heterologous protein yield. Appl. Biochem. Biotechnol. 80: 23-37 https://doi.org/10.1385/ABAB:80:1:23
  11. Harwood, C. R. 1992. Bacillus subtilis and its relatives: Molecular biological and industrial workhorses. Trends Biotechnol. 10: 247-256 https://doi.org/10.1016/0167-7799(92)90233-L
  12. Jürgen, B., H. Y. Lin, S. Riemschneider, C. Scharf, P. Neubauer, R. Schmid, M. Hecker, and T. Schweder. 2000. Monitoring of genes that respond to overproduction of an insoluble recombinant protein in Escherichia coli glucoselimited fed-batch fermentations. Biotechnol. Bioeng. 70: 217-224 https://doi.org/10.1002/1097-0290(20001020)70:2<217::AID-BIT11>3.0.CO;2-W
  13. Jürgen, B., R. Hanschke, M. Sarvas, M. Hecker, and T. Schweder. 2001. Proteome and transcriptome based analysis of Bacillus subtilis cells overproducing an insoluble heterologous protein. Appl. Microbiol. Biotechnol. 55: 326-332 https://doi.org/10.1007/s002530000531
  14. Kim, M. J., H. J. Chung, S. M. Park, S. G. Park, D. K. Chung, M. S. Yang, and D. H. Kim. 2004. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)-based cloning of enolase, ENO1, from Cryphonectria parasitica. J. Microbiol. Biotechnol. 14: 620-627
  15. Kosinski, M. J., U. Rinas, and J. E. Bailey. 1992. Proteolytic response to the expression of an abnormal beta-galactosidase in Escherichia coli. Appl. Microbiol. Biotechnol. 37: 335- 341 https://doi.org/10.1007/BF00210989
  16. Kruger, E., E. Witt, S. Ohlmeier, R. Hanschke, and M. Hecker. 2000. The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J. Bacteriol. 182: 3259-3265 https://doi.org/10.1128/JB.182.11.3259-3265.2000
  17. Kunst, F., N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni, V. Azevedo, M. G. Bertero, P. Bessieres, A. Bolotin, S. Borchert, R. Borriss, L. Boursier, A. Brans, M. Braun, S. C. Brignell, S. Bron, S. Brouillet, C. V. Bruschi, B. Caldwell, V. Capuano, N. M. Carter, S. K. Choi, J. J. Codani, I. F. Connerton, A. Danchin, et. al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249-256 https://doi.org/10.1038/36786
  18. Kurland, C. G. and H. Dong. 1996. Bacterial growth inhibition by overproduction of protein. Mol. Microbiol. 21: 1-4 https://doi.org/10.1046/j.1365-2958.1996.5901313.x
  19. Mogk, A., A. Völker, S. Engelmann, M. Hecker, W. Schumann, and U. Völker. 1998. Nonnative proteins induce expression of the Bacillus subtilis CIRCE regulon. J. Bacteriol. 180: 2895-2900
  20. Park, S. C., M. J. Kwon, S. K. Kim, and S. W. Nam. 2004. GroEL/ES chaperone and low temperature synergistically enhanced the soluble expression of CGTase in E. coli. J. Microbiol. Biotechnol. 14: 216-219
  21. Rinas, U., T. C. Boone, and J. E. Bailey. 1993. Characterization of inclusion bodies in recombinant Escherichia coli producing high levels of porcine somatotropin. J. Biotechnol. 28: 313- 320 https://doi.org/10.1016/0168-1656(93)90179-Q
  22. Rinas, U. 1996. Synthesis rates of cellular proteins involved in translation and protein folding are strongly altered in response to overproduction of basic fibroblast growth factor by recombinant Escherichia coli. Biotechnol. Prog. 12: 196-200 https://doi.org/10.1021/bp9600039
  23. Sarvas, M. 1995. Gene expression in recombinant Bacillus. Bioprocess Technol. 22: 53-120
  24. Vind, J., M. A. Sorensen, M. D. Rasmussen, and S. Pedersen. 1993. Synthesis of proteins in Escherichia coli is limited by the concentration of free ribosomes. Expression from reporter genes does not always reflect functional mRNA levels. J. Mol. Biol. 231: 678-688 https://doi.org/10.1006/jmbi.1993.1319