Proteomics for Streptomyces: 'Industrial Proteomics' for Antibiotics

  • Lee Kwang-Won (Interdisciplinary Program for Biochemical Engineering and Biotechnology, and Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Joo Hwang-Soo (School of Chemical & Biological Engineering, Bioengineering Institute, and Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Yang Yung-Hun (School of Chemical & Biological Engineering, Bioengineering Institute, and Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Song Eun-Jung (School of Chemical & Biological Engineering, Bioengineering Institute, and Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Kim Byung-Gee (Interdisciplinary Program for Biochemical Engineering and Biotechnology, and Institute of Molecular Biology and Genetics, Seoul National University, School of Chemical & Biological Engineering, Bioengineering Institute, and Institute of Molecular Biology and Genetics, Seoul National University, Bioengineering Institute, Seoul National University)
  • 발행 : 2006.03.01

초록

키워드

참고문헌

  1. Abou-Zeid, A. Z. 1972. Production of vitamin B 12 by Streptomyces spp. Indian J. Exp. Biol. 10: 155-157
  2. Adewoye, L., A. Sutherland, R. Srikumar, and K. Poole. 2002. The mexR repressor of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: Characterization of mutations compromising activity. J. Bacteriol 184: 4308- 4312 https://doi.org/10.1128/JB.184.15.4308-4312.2002
  3. Aldor, I. S., D. C. Krawitz, W. Forrest, C. Chen, J. C. Nishihara, J. C. Joly, and K. M. Champion. 2005. Proteomic profiling of recombinant Escherichia coli in high-cell-density fermentations for improved production of an antibody fragment biopharmaceutical. Appl. Environ. Microbiol. 71: 1717-1728 https://doi.org/10.1128/AEM.71.4.1717-1728.2005
  4. Antelmann, H., H. Tjalsma, B. Voigt, S. Ohlmeier, S. Bron, J. M. van Dijl, and M. Hecker. 2001. A proteomic view on genome-based signal peptide predictions. Genome Res. 11: 1484-1502 https://doi.org/10.1101/gr.182801
  5. Avignone Rossa, C., J. White, A. Kuiper, P. W. Postma, M. Bibb, and M. J. Teixeira de Mattos. 2002. Carbon flux distribution in antibiotic-producing chemostat cultures of Streptomyces lividans. Metab. Eng. 4: 138-150 https://doi.org/10.1006/mben.2001.0217
  6. Baltz, R. H. 1998. Genetic manipulation of antibioticproducing Streptomyces. Trends Microbiol. 6: 76-83 https://doi.org/10.1016/S0966-842X(97)01161-X
  7. Bendt, A. K., A. Burkovski, S. Schaffer, M. Bott, M. Farwick, and T. Hermann. 2003. Towards a phosphoproteome map of Corynebacterium glutamicum. Proteomics 3: 1637- 1646 https://doi.org/10.1002/pmic.200300494
  8. Bentley, S. D., K. F. Chater, A. M. Cerdeno-Tarraga, G. L. Challis, N. R. Thomson, K. D. James, D. E. Harris, M. A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, G. Chandra, C. W. Chen, M. Collins, A. Cronin, A. Fraser, A. Goble, J. Hidalgo, T. Hornsby, S. Howarth, C. H. Huang, T. Kieser, L. Larke, L. Murphy, K. Oliver, S. O'Neil, E. Rabbinowitsch, M. A. Rajandream, K. Rutherford, S. Rutter, K. Seeger, D. Saunders, S. Sharp, R. Squares, S. Squares, K. Taylor, T. Warren, A. Wietzorrek, J. Woodward, B. G. Barrell, J. Parkhill, and D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147 https://doi.org/10.1038/417141a
  9. Berman, G. P., D. F. James, and D. I. Kamenev. 2000. Quantum chaos of an ion trapped in a linear ion trap. Chaos 10: 371-382 https://doi.org/10.1063/1.166504
  10. Bjork, G. R., J. U. Ericson, C. E. Gustafsson, T. G. Hagervall, Y. H. Jonsson, and P. M. Wikstrom. 1987. Transfer RNA modification. Annu. Rev. Biochem. 56: 263-287 https://doi.org/10.1146/annurev.bi.56.070187.001403
  11. Blonder, J., M. B. Goshe, R. J. Moore, L. Pasa-Tolic, C. D. Masselon, M. S. Lipton, and R. D. Smith. 2002. Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. J Proteome Res. 1: 351-360 https://doi.org/10.1021/pr0255248
  12. Bogdanov, B. and R. D. Smith. 2005. Proteomics by FTICR mass spectrometry: Top down and bottom up. Mass Spectrom. Rev. 24: 168-200 https://doi.org/10.1002/mas.20015
  13. Bowman, W. H., C. W. Tabor, and H. Tabor. 1973. Spermidine biosynthesis. Purification and properties of propylamine transferase from Escherichia coli. J. Biol. Chem. 248: 2480- 2486
  14. Bucca, G., A. M. Brassington, G. Hotchkiss, V. Mersinias, and C. P. Smith. 2003. Negative feedback regulation of dnaK, clpB and lon expression by the DnaK chaperone machine in Streptomyces coelicolor, identified by transcriptome and in vivo DnaK-depletion analysis. Mol. Microbiol. 50: 153-166 https://doi.org/10.1046/j.1365-2958.2003.03696.x
  15. Buche, A., C. Mendez, and J. A. Salas. 1997. Interaction between ATP, oleandomycin and the OleB ATP-binding cassette transporter of Streptomyces antibioticus involved in oleandomycin secretion. Biochem. J. 321(Pt 1): 139- 144 https://doi.org/10.1042/bj3210139
  16. Butler, M. J., E. Takano, P. Bruheim, S. Jovetic, F. Marinelli, and M. J. Bibb. 2003. Deletion of scbA enhances antibiotic production in Streptomyces lividans. Appl. Microbiol. Biotechnol. 61: 512-516 https://doi.org/10.1007/s00253-003-1277-8
  17. Cane, D. E., F. Kudo, K. Kinoshita, and C. Khosla. 2002. Precursor-directed biosynthesis: Biochemical basis of the remarkable selectivity of the erythromycin polyketide synthase toward unsaturated triketides. Chem. Biol. 9: 131-142 https://doi.org/10.1016/S1074-5521(02)00089-3
  18. Cantoni, G. L. 1975. Biological methylation: Selected aspects. Annu. Rev. Biochem. 44: 435-451 https://doi.org/10.1146/annurev.bi.44.070175.002251
  19. Chakraburtty, R., J. White, E. Takano, and M. Bibb. 1996. Cloning, characterization and disruption of a (p)ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2). Mol. Microbiol. 19: 357-368 https://doi.org/10.1046/j.1365-2958.1996.390919.x
  20. Chang, W. C., C. W. Li, and B. S. Chen. 2005. Quantitative inference of dynamic regulatory pathways via microarray data. BMC Bioinformatics 6: 44 https://doi.org/10.1186/1471-2105-6-44
  21. Chater, K. F. and S. Horinouchi. 2003. Signalling early developmental events in two highly diverged Streptomyces species. Mol. Microbiol. 48: 9-15 https://doi.org/10.1046/j.1365-2958.2003.03476.x
  22. Chen, K. C., T. Y. Wang, H. H. Tseng, C. Y. Huang, and C. Y. Kao. 2005. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 21: 2883-2890 https://doi.org/10.1093/bioinformatics/bti415
  23. Chen, X., S. Schauder, N. Potier, A. Van Dorsselaer, I. Pelczer, B. L. Bassler, and F. M. Hughson. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415: 545-549 https://doi.org/10.1038/415545a
  24. Cherest, H. and Y. Surdin-Kerjan. 1981. The two methionine adenosyl transferases in Saccharomyces cerevisiae: Evidence for the existence of dimeric enzymes. Mol. Gen. Genet. 182: 65-69 https://doi.org/10.1007/BF00422768
  25. Chiang, P. K., R. K. Gordon, J. Tal, G. C. Zeng, B. P. Doctor, K. Pardhasaradhi, and P. P. McCann. 1996. SAdenosylmethionine and methylation. Faseb J. 10: 471-480 https://doi.org/10.1096/fasebj.10.4.8647346
  26. Cho, Y. H., E. J. Lee, B. E. Ahn, and J. H. Roe. 2001. SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor. Mol. Microbiol. 42: 205-214 https://doi.org/10.1046/j.1365-2958.2001.02622.x
  27. Chung, Y. S., F. Breidt, and D. Dubnau. 1998. Cell surface localization and processing of the ComG proteins, required for DNA binding during transformation of Bacillus subtilis. Mol. Microbiol. 29: 905-913 https://doi.org/10.1046/j.1365-2958.1998.00989.x
  28. Chung, Y. S. and D. Dubnau. 1995. ComC is required for the processing and translocation of comGC, a pilin-like competence protein of Bacillus subtilis. Mol. Microbiol. 15: 543-551 https://doi.org/10.1111/j.1365-2958.1995.tb02267.x
  29. Dorenbos, R., T. Stein, J. Kabel, C. Bruand, A. Bolhuis, S. Bron, W. J. Quax, and J. M. Van Dijl. 2002. Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168. J. Biol. Chem. 277: 16682-16688 https://doi.org/10.1074/jbc.M201158200
  30. Eggert, T., U. Brockmeier, M. J. Droge, W. J. Quax, and K. E. Jaeger. 2003. Extracellular lipases from Bacillus subtilis: Regulation of gene expression and enzyme activity by amino acid supply and external pH. FEMS Microbiol. Lett. 225: 319-324 https://doi.org/10.1016/S0378-1097(03)00536-6
  31. Everley, P. A., J. Krijgsveld, B. R. Zetter, and S. P. Gygi. 2004. Quantitative cancer proteomics: Stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol. Cell Proteomics 3: 729-735 https://doi.org/10.1074/mcp.M400021-MCP200
  32. Fenn, J. B., M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse. 1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246: 64-71 https://doi.org/10.1126/science.2675315
  33. Fernandez, E., F. Lombo, C. Mendez, and J. A. Salas. 1996. An ABC transporter is essential for resistance to the antitumor agent mithramycin in the producer Streptomyces argillaceus. Mol. Gen. Genet. 251: 692-698
  34. Ficarro, S. B., M. L. McCleland, P. T. Stukenberg, D. J. Burke, M. M. Ross, J. Shabanowitz, D. F. Hunt, and F. M. White. 2002. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol 20: 301-305 https://doi.org/10.1038/nbt0302-301
  35. Fleischmann, R. D., M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R. Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, J. M. Merrick, and et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496-512 https://doi.org/10.1126/science.7542800
  36. Floriano, B. and M. Bibb. 1996. afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 21: 385- 396 https://doi.org/10.1046/j.1365-2958.1996.6491364.x
  37. Furuya, K. and C. R. Hutchinson. 1998. The DrrC protein of Streptomyces peucetius, a UvrA-like protein, is a DNAbinding protein whose gene is induced by daunorubicin. FEMS Microbiol. Lett. 168: 243-249 https://doi.org/10.1111/j.1574-6968.1998.tb13280.x
  38. Gadgil, H., L. A. Jurado, and H. W. Jarrett. 2001. DNA affinity chromatography of transcription factors. Anal. Biochem. 290: 147-178 https://doi.org/10.1006/abio.2000.4912
  39. Gatlin, C. L., G. R. Kleemann, L. G. Hays, A. J. Link, and J. R. Yates, 3rd. 1998. Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry. Anal. Biochem. 263: 93- 101 https://doi.org/10.1006/abio.1998.2809
  40. Gehring, A. M., N. J. Yoo, and R. Losick. 2001. RNA polymerase sigma factor that blocks morphological differentiation by Streptomyces coelicolor. J. Bacteriol. 183: 5991-5996 https://doi.org/10.1128/JB.183.20.5991-5996.2001
  41. Guerrera, I. C. and O. Kleiner. 2005. Application of mass spectrometry in proteomics. Biosci. Rep. 25: 71-93 https://doi.org/10.1007/s10540-005-2849-x
  42. Gygi, S. P., B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, and R. Aebersold. 1999. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17: 994-999 https://doi.org/10.1038/13690
  43. Hall, M. P. and L. V. Schneider. 2004. Isotope-differentiated binding energy shift tags (IDBEST) for improved targeted biomarker discovery and validation. Expert. Rev. Proteomics 1: 421-431 https://doi.org/10.1586/14789450.1.4.421
  44. Han, D. K., J. Eng, H. Zhou, and R. Aebersold. 2001. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 19: 946-951 https://doi.org/10.1038/nbt1001-946
  45. Heldwein, E. E. and R. G. Brennan. 2001. Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 409: 378-382 https://doi.org/10.1038/35053138
  46. Hesketh, A. and K. F. Chater. 2003. Evidence from proteomics that some of the enzymes of actinorhodin biosynthesis have more than one form and may occupy distinctive cellular locations. J. Ind. Microbiol. Biotechnol. 30: 523-529 https://doi.org/10.1007/s10295-003-0067-8
  47. Hesketh, A. R., G. Chandra, A. D. Shaw, J. J. Rowland, D. B. Kell, M. J. Bibb, and K. F. Chater. 2002. Primary and secondary metabolism, and post-translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor. Mol. Microbiol. 46: 917-932 https://doi.org/10.1046/j.1365-2958.2002.03219.x
  48. Horinouchi, S. 2003. AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J. Ind. Microbiol. Biotechnol. 30: 462- 467 https://doi.org/10.1007/s10295-003-0063-z
  49. Horinouchi, S. and T. Beppu. 1990. Autoregulatory factors of secondary metabolism and morphogenesis in actinomycetes. Crit. Rev. Biotechnol. 10: 191-204 https://doi.org/10.3109/07388559009038207
  50. Horinouchi, S. and T. Beppu. 1992. Regulation of secondary metabolism and cell differentiation in Streptomyces: Afactor as a microbial hormone and the AfsR protein as a component of a two-component regulatory system. Gene 115: 167-172 https://doi.org/10.1016/0378-1119(92)90555-4
  51. Horinouchi, S. and T. Beppu. 1994. A-factor as a microbial hormone that controls cellular differentiation and secondary metabolism in Streptomyces griseus. Mol. Microbiol. 12: 859-864 https://doi.org/10.1111/j.1365-2958.1994.tb01073.x
  52. Horinouchi, S., Y. Ohnishi, and D. K. Kang. 2001. The Afactor regulatory cascade and cAMP in the regulation of physiological and morphological development in Streptomyces griseus. J. Ind. Microbiol. Biotechnol. 27: 177-182 https://doi.org/10.1038/sj.jim.7000068
  53. Horinouchi, S., H. Suzuki, M. Nishiyama, and T. Beppu. 1989. Nucleotide sequence and transcriptional analysis of the Streptomyces griseus gene (afsA) responsible for Afactor biosynthesis. J. Bacteriol. 171: 1206-1210 https://doi.org/10.1128/jb.171.2.1206-1210.1989
  54. Hranueli, D., J. Cullum, B. Basrak, P. Goldstein, and P. F. Long. 2005. Plasticity of the streptomyces genome-evolution and engineering of new antibiotics. Curr. Med. Chem. 12: 1697-1704 https://doi.org/10.2174/0929867054367176
  55. Huang, J., J. Shi, V. Molle, B. Sohlberg, D. Weaver, M. J. Bibb, N. Karoonuthaisiri, C. J. Lih, C. M. Kao, M. J. Buttner, and S. N. Cohen. 2005. Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol. Microbiol. 58: 1276-1287 https://doi.org/10.1111/j.1365-2958.2005.04879.x
  56. Huh, J. H., D. J. Kim, X. Q. Zhao, M. Li, Y. Y. Jo, T. M. Yoon, S. K. Shin, J. H. Yong, Y. W. Ryu, Y. Y. Yang, and J. W. Suh. 2004. Widespread activation of antibiotic biosynthesis by S-adenosylmethionine in streptomycetes. FEMS Microbiol. Lett. 238: 439-447 https://doi.org/10.1111/j.1574-6968.2004.tb09787.x
  57. Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21: 526-531 https://doi.org/10.1038/nbt820
  58. Iwata-Reuyl, D. 2003. Biosynthesis of the 7-deazaguanosine hypermodified nucleosides of transfer RNA. Bioorg. Chem. 31: 24-43 https://doi.org/10.1016/S0045-2068(02)00513-8
  59. Jeong, J. C., A. Srinivasan, S. Gruschow, H. Bach, D. H. Sherman, and J. S. Dordick. 2005. Exploiting the reaction flexibility of a type III polyketide synthase through in vitro pathway manipulation. J. Am. Chem. Soc. 127: 64-65 https://doi.org/10.1021/ja0441559
  60. Jo, Y., S. Kim, Y. Yang, C. Kang, J. Sohng, and J. Suh. 2003. Functional analysis of spectinomycin biosynthetic genes from Streptomyces spectabilis ATCC27741. J. Microbiol. Biotechnol. 13: 906-911
  61. Jongbloed, J. D., H. Antelmann, M. Hecker, R. Nijland, S. Bron, U. Airaksinen, F. Pries, W. J. Quax, J. M. van Dijl, and P. G. Braun. 2002. Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J. Biol. Chem. 277: 44068-44078 https://doi.org/10.1074/jbc.M203191200
  62. Kammerer, B., R. Kahlich, S. Laufer, S. M. Li, L. Heide, and C. H. Gleiter. 2004. Mass spectrometric pathway monitoring of secondary metabolites: Systematic analysis of culture extracts of Streptomyces species. Anal. Biochem. 335: 17- 29 https://doi.org/10.1016/j.ab.2004.08.018
  63. Karoonuthaisiri, N., D. Weaver, J. Huang, S. N. Cohen, and C. M. Kao. 2005. Regional organization of gene expression in Streptomyces coelicolor. Gene 353: 53-66 https://doi.org/10.1016/j.gene.2005.03.042
  64. Kato, J. Y., I. Miyahisa, M. Mashiko, Y. Ohnishi, and S. Horinouchi. 2004. A single target is sufficient to account for the biological effects of the A-factor receptor protein of Streptomyces griseus. J. Bacteriol. 186: 2206-2211 https://doi.org/10.1128/JB.186.7.2206-2211.2004
  65. Khaw, T. S., Y. Katakura, J. Koh, A. Kondo, M. Ueda, and S. Shioya. 2005. Evaluation of performance of different surfaceengineered yeast strains for direct ethanol production from raw starch. Appl. Microbiol. Biotechnol. 18: 1-7
  66. Kim, D. J., J. H. Huh, Y. Y. Yang, C. M. Kang, I. H. Lee, C. G. Hyun, S. K. Hong, and J. W. Suh. 2003. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185: 592-600 https://doi.org/10.1128/JB.185.2.592-600.2003
  67. Kim, D. W., K. Chater, K. J. Lee, and A. Hesketh. 2005. Changes in the extracellular proteome caused by the absence of the bldA gene product, a developmentally significant tRNA, reveal a new target for the pleiotropic regulator AdpA in Streptomyces coelicolor. J. Bacteriol. 187: 2957-2966 https://doi.org/10.1128/JB.187.9.2957-2966.2005
  68. Kim, H. B., C. P. Smith, J. Micklefield, and F. Mavituna. 2004. Metabolic flux analysis for calcium dependent antibiotic (CDA) production in Streptomyces coelicolor. Metab. Eng. 6: 313-325 https://doi.org/10.1016/j.ymben.2004.04.001
  69. Kim, J., C. Kim, and H. Chang. 2004. Screening and characterization of red yeast Xanthophyllomyces dendrorhous mutants. J. Microbiol. Biotechnol. 14: 570-575
  70. Kim, Y. H., J. S. Park, J. Y. Cho, K. M. Cho, Y. H. Park, and J. Lee. 2004. Proteomic response analysis of a threonineoverproducing mutant of Escherichia coli. Biochem. J. 381: 823-829 https://doi.org/10.1042/BJ20031763
  71. Kleijn, R. J., W. A. van Winden, W. M. van Gulik, and J. J. Heijnen. 2005. Revisiting the 13C-label distribution of the non-oxidative branch of the pentose phosphate pathway based upon kinetic and genetic evidence. Febs. J. 272: 4970-4982 https://doi.org/10.1111/j.1742-4658.2005.04907.x
  72. Kobi, D., S. Zugmeyer, S. Potier, and L. Jaquet-Gutfreund. 2004. Two-dimensional protein map of an 'ale'-brewing yeast strain: Proteome dynamics during fermentation. FEMS Yeast Res. 5: 213-230 https://doi.org/10.1016/j.femsyr.2004.07.004
  73. Kren, V. and L. Martinkova. 2001. Glycosides in medicine: 'The role of glycosidic residue in biological activity'. Curr. Med. Chem. 8: 1303-1328 https://doi.org/10.2174/0929867013372193
  74. Kromer, J. O., O. Sorgenfrei, K. Klopprogge, E. Heinzle, and C. Wittmann. 2004. In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J. Bacteriol. 186: 1769-1784 https://doi.org/10.1128/JB.186.6.1769-1784.2004
  75. Lautru, S., R. J. Deeth, L. M. Bailey, and G. L. Challis. 2005. Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat. Chem. Biol. 1: 265-269 https://doi.org/10.1038/nchembio731
  76. Lee, J. H., D. E. Lee, B. U. Lee, and H. S. Kim. 2003. Global analyses of transcriptomes and proteomes of a parent strain and an L-threonine-overproducing mutant strain. J. Bacteriol. 185: 5442-5451 https://doi.org/10.1128/JB.185.18.5442-5451.2003
  77. Lee, P. C., T. Umeyama, and S. Horinouchi. 2002. afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol. Microbiol. 43: 1413-1430 https://doi.org/10.1046/j.1365-2958.2002.02840.x
  78. Leskiw, B. K., E. J. Lawlor, J. M. Fernandez-Abalos, and K. F. Chater. 1991. TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants. Proc. Natl. Acad. Sci. USA 88: 2461-2465 https://doi.org/10.1073/pnas.88.6.2461
  79. Lewis, E. A., T. L. Adamek, L. C. Vining, and R. L. White. 2003. Metabolites of a blocked chloramphenicol producer. J. Nat. Prod. 66: 62-66 https://doi.org/10.1021/np020306e
  80. Losey, H. C., J. Jiang, J. B. Biggins, M. Oberthur, X. Y. Ye, S. D. Dong, D. Kahne, J. S. Thorson, and C. T. Walsh. 2002. Incorporation of glucose analogs by GtfE and GtfD from the vancomycin biosynthetic pathway to generate variant glycopeptides. Chem. Biol. 9: 1305-1314 https://doi.org/10.1016/S1074-5521(02)00270-3
  81. Lum, A. M., J. Huang, C. R. Hutchinson, and C. M. Kao. 2004. Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays. Metab. Eng. 6: 186-196 https://doi.org/10.1016/j.ymben.2003.12.001
  82. MacCoss, M. J., C. C. Wu, and J. R. Yates, 3rd. 2002. Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal. Chem. 74: 5593- 5599 https://doi.org/10.1021/ac025826t
  83. Marshall, C. G. and G. D. Wright. 1997. The glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15009 has both D-alanyl-D-alanine and D-alanyl-D-lactate ligases. FEMS Microbiol. Lett. 157: 295-299 https://doi.org/10.1016/S0378-1097(97)00449-7
  84. Martinez-Costa, O. H., M. A. Fernandez-Moreno, and F. Malpartida. 1998. The relA/spoT-homologous gene in Streptomyces coelicolor encodes both ribosome-dependent (p)ppGpp-synthesizing and -degrading activities. J. Bacteriol. 180: 4123-4132
  85. Miccheli, A., A. Tomassini, C. Puccetti, M. Valerio, G. Peluso, F. Tuccillo, M. Calvani, C. Manetti, and F. Conti. 2005. Metabolic profiling by (13)C-NMR spectroscopy: [1,2-(13)C(2)]glucose reveals a heterogeneous metabolism in human leukemia T cells. Biochimie
  86. Miller, M. B. and B. L. Bassler. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165-199 https://doi.org/10.1146/annurev.micro.55.1.165
  87. Moore, B. S. and C. Hertweck. 2002. Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat. Prod. Rep. 19: 70-99 https://doi.org/10.1039/b003939j
  88. Naeimpoor, F. and F. Mavituna. 2000. Metabolic flux analysis in Streptomyces coelicolor under various nutrient limitations. Metab. Eng. 2: 140-148 https://doi.org/10.1006/mben.2000.0146
  89. Nikaido, H. 1996. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 178: 5853-5859 https://doi.org/10.1128/jb.178.20.5853-5859.1996
  90. Novick, R. P. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48: 1429-1449 https://doi.org/10.1046/j.1365-2958.2003.03526.x
  91. Ohnishi, Y., S. Kameyama, H. Onaka, and S. Horinouchi. 1999. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: Identification of a target gene of the A-factor receptor. Mol. Microbiol. 34: 102-111 https://doi.org/10.1046/j.1365-2958.1999.01579.x
  92. Ohnishi, Y., H. Yamazaki, J. Y. Kato, A. Tomono, and S. Horinouchi. 2005. AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci. Biotechnol. Biochem. 69: 431-439 https://doi.org/10.1271/bbb.69.431
  93. Okamoto, S., A. Lezhava, T. Hosaka, Y. Okamoto-Hosoya, and K. Ochi. 2003. Enhanced expression of Sadenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J. Bacteriol. 185: 601-609 https://doi.org/10.1128/JB.185.2.601-609.2003
  94. Omura, S., H. Ikeda, J. Ishikawa, A. Hanamoto, C. Takahashi, M. Shinose, Y. Takahashi, H. Horikawa, H. Nakazawa, T. Osonoe, H. Kikuchi, T. Shiba, Y. Sakaki, and M. Hattori. 2001. Genome sequence of an industrial microorganism Streptomyces avermitilis: Deducing the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. USA 98: 12215-12220 https://doi.org/10.1073/pnas.211433198
  95. Onaka, H., N. Ando, T. Nihira, Y. Yamada, T. Beppu, and S. Horinouchi. 1995. Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J. Bacteriol. 177: 6083-6092 https://doi.org/10.1128/jb.177.21.6083-6092.1995
  96. Ong, S. E., B. Blagoev, I. Kratchmarova, D. B. Kristensen, H. Steen, A. Pandey, and M. Mann. 2002. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1: 376-386 https://doi.org/10.1074/mcp.M200025-MCP200
  97. Ostrowski, J. and K. Bomsztyk. 1993. Purification of DNA-binding proteins using tandem DNA-affinity column. Nucleic Acids Res. 21: 1045-1046 https://doi.org/10.1093/nar/21.4.1045
  98. Paget, M. S., V. Molle, G. Cohen, Y. Aharonowitz, and M. J. Buttner. 2001. Defining the disulphide stress response in Streptomyces coelicolor A3(2): Identification of the sigmaR regulon. Mol. Microbiol. 42: 1007-1020 https://doi.org/10.1046/j.1365-2958.2001.02675.x
  99. Papagianni, M., N. Joshi, and M. Moo-Young. 2002. Comparative studies on extracellular protease secretion and glucoamylase production by free and immobilized Aspergillus niger cultures. J. Ind. Microbiol. Biotechnol. 29: 259-263 https://doi.org/10.1038/sj.jim.7000289
  100. Peterman, S. M., N. Duczak, Jr., A. S. Kalgutkar, M. E. Lame, and J. R. Soglia. 2006. Application of a linear ion trap/orbitrap mass spectrometer in metabolite characterization studies: Examination of the human liver microsomal metabolism of the non-tricyclic anti-depressant nefazodone using data-dependent accurate mass measurements. J. Am. Soc. Mass. Spectrom. 17: 363-375 https://doi.org/10.1016/j.jasms.2005.11.014
  101. Potuckova, L., G. H. Kelemen, K. C. Findlay, M. A. Lonetto, M. J. Buttner, and J. Kormanec. 1995. A new RNA polymerase sigma factor, sigma F, is required for the late stages of morphological differentiation in Streptomyces spp. Mol. Microbiol. 17: 37-48 https://doi.org/10.1111/j.1365-2958.1995.mmi_17010037.x
  102. Putman, M., H. W. van Veen, and W. N. Konings. 2000. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64: 672-693 https://doi.org/10.1128/MMBR.64.4.672-693.2000
  103. Ramos, J. L., M. Martinez-Bueno, A. J. Molina-Henares, W. Teran, K. Watanabe, X. Zhang, M. T. Gallegos, R. Brennan, and R. Tobes. 2005. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69: 326-356 https://doi.org/10.1128/MMBR.69.2.326-356.2005
  104. Rock, C. O., R. B. Calder, M. A. Karim, and S. Jackowski. 2000. Pantothenate kinase regulation of the intracellular concentration of coenzyme A. J. Biol. Chem. 275: 1377- 1383 https://doi.org/10.1074/jbc.275.2.1377
  105. Roitsch, C. A. and J. H. Hageman. 1983. Bacillopeptidase F: Two forms of a glycoprotein serine protease from Bacillus subtilis 168. J. Bacteriol. 155: 145-152
  106. Rush, J., A. Moritz, K. A. Lee, A. Guo, V. L. Goss, E. J. Spek, H. Zhang, X. M. Zha, R. D. Polakiewicz, and M. J. Comb. 2005. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23: 94- 101 https://doi.org/10.1038/nbt1046
  107. Ryu, Y. G., W. Jin, J. Y. Kim, J. Y. Kim, S. H. Lee, and K. J. Lee. 2004. Stringent factor regulates antibiotics production and morphological differentiation of Streptomyces clavuligerus. J. Microbiol. Biotechnol. 14: 1170-1175
  108. Samarntarn, W., S. Cheevadhanarak, and M. Tanticharoen. 1999. Production of alkaline protease by a genetically engineered Aspergillus oryzae U1521. J. Gen. Appl. Microbiol. 45: 99-103 https://doi.org/10.2323/jgam.45.99
  109. Sato, T., Y. Yamada, Y. Ohtani, N. Mitsui, H. Murasawa, and S. Araki. 2001. Production of menaquinone (vitamin K2)-7 by Bacillus subtilis. J. Biosci. Bioeng. 91: 16-20 https://doi.org/10.1263/jbb.91.16
  110. Schluesener, D., F. Fischer, J. Kruip, M. Rogner, and A. Poetsch. 2005. Mapping the membrane proteome of Corynebacterium glutamicum. Proteomics 5: 1317-1330 https://doi.org/10.1002/pmic.200400993
  111. Sevcikova, B., O. Benada, O. Kofronova, and J. Kormanec. 2001. Stress-response sigma factor sigma(H) is essential for morphological differentiation of Streptomyces coelicolor A3(2). Arch. Microbiol. 177: 98-106 https://doi.org/10.1007/s00203-001-0367-1
  112. Shadforth, I. P., T. P. Dunkley, K. S. Lilley, and C. Bessant. 2005. i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics 6: 145 https://doi.org/10.1186/1471-2164-6-145
  113. Shaw, P. D., G. Ping, S. L. Daly, C. Cha, J. E. Cronan, Jr., K. L. Rinehart, and S. K. Farrand. 1997. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA 94: 6036-6041
  114. Shen, B. 2003. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 7: 285-295 https://doi.org/10.1016/S1367-5931(03)00020-6
  115. Shomo, R. E., 2nd, A. G. Marshall, and C. R. Weisenberger. 1985. Laser desorption Fourier transform ion cyclotron resonance mass spectrometry vs. fast atom bombardment magnetic sector mass spectrometry for drug analysis. Anal. Chem. 57: 2940-2944 https://doi.org/10.1021/ac00291a043
  116. Sletta, H., S. E. Borgos, P. Bruheim, O. N. Sekurova, H. Grasdalen, R. Aune, T. E. Ellingsen, and S. B. Zotchev. 2005. Nystatin biosynthesis and transport: nysH and nysG genes encoding a putative ABC transporter system in Streptomyces noursei ATCC 11455 are required for efficient conversion of 10-deoxynystatin to nystatin. Antimicrob. Agents Chemother. 49: 4576-4583 https://doi.org/10.1128/AAC.49.11.4576-4583.2005
  117. Sonenshein, A. L., J. A. Hoch, and R. Losick. 1993. Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics American Society for Microbiology, Washington, D.C
  118. Stanley, N. R. and B. A. Lazazzera. 2004. Environmental signals and regulatory pathways that influence biofilm formation. Mol. Microbiol. 52: 917-924 https://doi.org/10.1111/j.1365-2958.2004.04036.x
  119. Stansen, C., D. Uy, S. Delaunay, L. Eggeling, J. L. Goergen, and V. F. Wendisch. 2005. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl. Environ. Microbiol. 71: 5920-5928 https://doi.org/10.1128/AEM.71.10.5920-5928.2005
  120. Studholme, D. J., S. D. Bentley, and J. Kormanec. 2004. Bioinformatic identification of novel regulatory DNA sequence motifs in Streptomyces coelicolor. BMC Microbiol. 4: 14 https://doi.org/10.1186/1471-2180-4-4
  121. Takano, E., R. Chakraburtty, T. Nihira, Y. Yamada, and M. J. Bibb. 2001. A complex role for the gammabutyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 41: 1015- 1028 https://doi.org/10.1046/j.1365-2958.2001.02562.x
  122. Takano, E., T. Nihira, Y. Hara, J. J. Jones, C. J. Gershater, Y. Yamada, and M. Bibb. 2000. Purification and structural determination of SCB1, a gamma-butyrolactone that elicits antibiotic production in Streptomyces coelicolor A3(2). J. Biol. Chem. 275: 11010-11016 https://doi.org/10.1074/jbc.275.15.11010
  123. Takano, E., M. Tao, F. Long, M. J. Bibb, L. Wang, W. Li, M. J. Buttner, M. J. Bibb, Z. X. Deng, and K. F. Chater. 2003. A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol. Microbiol. 50: 475-486 https://doi.org/10.1046/j.1365-2958.2003.03728.x
  124. Tanaka, K., H. Waki, Y. Ido, S. Akita, Y. Yosida, and T. Yosida. 1988. Protein and Polymer analysis up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2: 151-153
  125. Tjalsma, H., H. Antelmann, J. D. Jongbloed, P. G. Braun, E. Darmon, R. Dorenbos, J. Y. Dubois, H. Westers, G. Zanen, W. J. Quax, O. P. Kuipers, S. Bron, M. Hecker, and J. M. van Dijl. 2004. Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol. Mol. Biol. Rev. 68: 207-233 https://doi.org/10.1128/MMBR.68.2.207-233.2004
  126. Tjalsma, H., A. Bolhuis, J. D. Jongbloed, S. Bron, and J. M. van Dijl. 2000. Signal peptide-dependent protein transport in Bacillus subtilis: A genome-based survey of the secretome. Microbiol. Mol. Biol. Rev. 64: 515-547
  127. Tjalsma, H., G. Zanen, G. Venema, S. Bron, and J. M. van Dijl. 1999. The potential active site of the lipoproteinspecific (type II) signal peptidase of Bacillus subtilis. J. Biol. Chem. 274: 28191-28197 https://doi.org/10.1074/jbc.274.40.28191
  128. Tomono, A., Y. Tsai, Y. Ohnishi, and S. Horinouchi. 2005. Three chymotrypsin genes are members of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. J. Bacteriol. 187: 6341-6353 https://doi.org/10.1128/JB.187.18.6341-6353.2005
  129. Tsai, I. C., Y. J. Hsieh, P. C. Lyu, and J. S. Yu. 2005. Antiphosphopeptide antibody, P-STM as a novel tool for detecting mitotic phosphoproteins: Identification of lamins A and C as two major targets. J. Cell Biochem. 94: 967-981 https://doi.org/10.1002/jcb.20353
  130. Uguru, G. C., K. E. Stephens, J. A. Stead, J. E. Towle, S. Baumberg, and K. J. McDowall. 2005. Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Mol. Microbiol. 58: 131-150 https://doi.org/10.1111/j.1365-2958.2005.04817.x
  131. Umeyama, T., P. C. Lee, K. Ueda, and S. Horinouchi. 1999. An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology 145(Pt 9): 2281-2292 https://doi.org/10.1099/00221287-145-9-2281
  132. Unlu, M., M. E. Morgan, and J. S. Minden. 1997. Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis 18: 2071-2077 https://doi.org/10.1002/elps.1150181133
  133. Van Dessel, W., L. Van Mellaert, H. Liesegang, C. Raasch, S. De Keersmaeker, N. Geukens, E. Lammertyn, W. Streit, and J. Anne. 2005. Complete genomic nucleotide sequence and analysis of the temperate bacteriophage VWB. Virology 331: 325-337 https://doi.org/10.1016/j.virol.2004.10.028
  134. Vogtli, M., P. C. Chang, and S. N. Cohen. 1994. afsR2: A previously undetected gene encoding a 63-amino-acid protein that stimulates antibiotic production in Streptomyces lividans. Mol. Microbiol. 14: 643-653 https://doi.org/10.1111/j.1365-2958.1994.tb01303.x
  135. Walsh, C. 2003. Antibiotics: Actions, origins, resistance. ASM Press, Washington, D.C
  136. Washburn, M. P., D. Wolters, and J. R. Yates, 3rd. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19: 242-247 https://doi.org/10.1038/85686
  137. Weitnauer, G., S. Gaisser, A. Trefzer, S. Stockert, L. Westrich, L. M. Quiros, C. Mendez, J. A. Salas, and A. Bechthold. 2001. An ATP-binding cassette transporter and two rRNA methyltransferases are involved in resistance to avilamycin in the producer organism Streptomyces viridochromogenes Tu57. Antimicrob. Agents Chemother. 45: 690-695 https://doi.org/10.1128/AAC.45.3.690-695.2001
  138. Wells, J. M., K. Robinson, L. M. Chamberlain, K. M. Schofield, and R. W. Le Page. 1996. Lactic acid bacteria as vaccine delivery vehicles. Antonie Van Leeuwenhoek 70: 317-330 https://doi.org/10.1007/BF00395939
  139. White, M. F., J. Vasquez, S. F. Yang, and J. F. Kirsch. 1994. Expression of apple 1-aminocyclopropane-1-carboxylate synthase in Escherichia coli: Kinetic characterization of wild-type and active-site mutant forms. Proc. Natl. Acad. Sci. USA 91: 12428-12432
  140. Wolters, D. A., M. P. Washburn, and J. R. Yates, 3rd. 2001. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73: 5683-5690 https://doi.org/10.1021/ac010617e
  141. Xavier, K. B. and B. L. Bassler. 2003. LuxS quorum sensing: More than just a numbers game. Curr. Opin. Microbiol. 6: 191-197 https://doi.org/10.1016/S1369-5274(03)00028-6
  142. Xue, Y. and D. H. Sherman. 2001. Biosynthesis and combinatorial biosynthesis of pikromycin-related macrolides in Streptomyces venezuelae. Metab. Eng. 3: 15-26 https://doi.org/10.1006/mben.2000.0167
  143. Yamazaki, H., Y. Ohnishi, and S. Horinouchi. 2003. Transcriptional switch on of ssgA by A-factor, which is essential for spore septum formation in Streptomyces griseus. J. Bacteriol. 185: 1273-1283 https://doi.org/10.1128/JB.185.4.1273-1283.2003
  144. Yamazaki, H., Y. Takano, Y. Ohnishi, and S. Horinouchi. 2003. amfR, an essential gene for aerial mycelium formation, is a member of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. Mol. Microbiol. 50: 1173-1187 https://doi.org/10.1046/j.1365-2958.2003.03760.x
  145. Yamazaki, H., A. Tomono, Y. Ohnishi, and S. Horinouchi. 2004. DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Mol. Microbiol. 53: 555-572 https://doi.org/10.1111/j.1365-2958.2004.04153.x
  146. Yang, Y. H., H. S. Joo, K. Lee, K. K. Liou, H. C. Lee, J. K. Sohng, and B. G. Kim. 2005. Novel method for detection of butanolides in Streptomyces coelicolor culture broth, using a His-tagged receptor (ScbR) and mass spectrometry. Appl. Environ. Microbiol. 71: 5050-5055 https://doi.org/10.1128/AEM.71.9.5050-5055.2005
  147. Yi, X. and R. M. Weis. 2002. The receptor docking segment and S-adenosyl-L-homocysteine bind independently to the methyltransferase of bacterial chemotaxis. Biochim. Biophys. Acta. 1596: 28-35 https://doi.org/10.1016/S0167-4838(01)00314-4
  148. Zazopoulos, E., K. Huang, A. Staffa, W. Liu, B. O. Bachmann, K. Nonaka, J. Ahlert, J. S. Thorson, B. Shen, and C. M. Farnet. 2003. A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat. Biotechnol. 21: 187-190 https://doi.org/10.1038/nbt784
  149. Zubarev, R. A., D. M. Horn, E. K. Fridriksson, N. L. Kelleher, N. A. Kruger, M. A. Lewis, B. K. Carpenter, and F. W. McLafferty. 2000. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal. Chem. 72: 563-573 https://doi.org/10.1021/ac990811p